Cho tam giác ABC nội tiếp (O), trực tâm H. Một điểm M chạy trên cung BC không chứa A của (O). Tiếp tuyến tại M của (O) cắt các tia HB, HC tại E,F. Lấy K đối xứng H qua EF. CMR: Đường tròn (KEF) luôn tiếp xúc với 1 đường tròn cố định khi M thay đổi ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
28 tháng 3 2018
Chú ý góc APC = góc AMC ( t/c đối xứng)
Mà góc AMC = Góc ABC
Chú ý : CH vuông góc AB
Từ đây có ngay kết quả nhe
29 tháng 7 2021
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)