Tìm x,y thuộc N biết 1!+2!+3!+.....+x!=y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta thấy:
$10x\equiv 0\pmod 5$
$288\equiv 3\pmod 5$
$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)
Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.
Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
![](https://rs.olm.vn/images/avt/0.png?1311)
phương trình bậc hai với hai biến x và y. Ta có thể giải nó bằng cách đặt (y = 5\cos{\theta}) (vì (|y| \leq 5)), từ đó suy ra (x = 2016 + \frac{5}{2}\tan{\theta}). Vì (x, y \in Z) nên (\tan{\theta}) phải là một số hữu tỉ. Ta có thể tìm các giá trị của (\theta) sao cho (\tan{\theta}) là một số hữu tỉ, từ đó suy ra các giá trị tương ứng của (x) và (y).
![](https://rs.olm.vn/images/avt/0.png?1311)
Với \(y\ge5\):
\(VP=1!+2!+3!+...+y!\)
có \(k!=1.2.3.4.5.....k\)có chữ số tận cùng là \(0\)với \(k\ge5\).
Do đó \(VP\)có chữ số tận cùng là chữ số tận cùng của \(1!+2!+3!+4!=33\)
nên có chữ số tận cùng là \(3\).
Mà số chính phương không thể có chữ số tận cùng là \(3\)do đó phương trình vô nghiệm với \(y\ge5\).
Thử trực tiếp từng trường hợp \(1\le y\le4\)ta được các nghiệm là \(\left(1,1\right),\left(3,3\right)\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
1 và 3 nha Nguyễn Hưng Phát
Nhận thấy:
x =1 ta có 1! = 12 => y = 1 thỏa mãn
x = 3 ta có 1! + 2! + 3! = 9 = 32 => y = 3 thỏa mãn
Nếu x > 4
1! + 2! + 3! + 4! = 33; từ 5! trở đi : các số đều tận cùng là 0 => tổng 1! + 2! + 3! + 4! + 5! + ...có tận cùng là 3 .Mà số chính phương không thể tận cùng là 3 nên không có giá trị y thỏa mãn
Vậy (x; y) = (1; 1) hoặc (1; 3)