Cho tam giác ABC cân tại A, kẻ AI vuông góc với BC, I thuộc BC
a) Chứng minh: IB=IC
b) Biết AB=10cm, BC=12cm. Tính AI?
c) Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BF=CF. Chứng minh EF//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: Góc BAE + BAD = góc BCF + BCA (=180 độ)
Góc BAD = BCA
⇒ góc BAE = FCB
Xét △BAE và △FCB có:
AB = CF
BAE = FCB
AE = CB
⇒△BAE = △FCB (c.g.c)
⇒EBA = CFB
Mà góc CFB + ABF = 90 độ ⇒EBA + ABF = 90 độ
⇒ góc EBF = 90 độ ⇒BE vuông góc với BF
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có
EB=FC
góc EBH=góc FCK
=>ΔEHB=ΔFKC
=>EH=FK
d: Xét ΔABH và ΔACK có
AB=AC
góc ABH=góc ACK
BH=CK
=>ΔABH=ΔACK
=>AH=AK
=>ΔAHK cân tại A
mà AM là đường cao
nên AM là phân giác của góc HAK
e: Xét ΔAHE và ΔAKF có
AH=AK
góc AHE=góc AKF
HE=KF
=>ΔAHE=ΔAKF
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Hình vẽ
a) Tam giác ABC cân tại A
AI là đường cao của tam giác ABC => AI cũng là đường trung tuyến của tam giác ABC
=> IB = IC
b) Ta có: \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6\) (cm)
Tam giác ABI vuông tại I
Áp dụng định lý Pytago suy ra:
\(AI^2+BI^2=AB^2\)
\(\Rightarrow AI=\sqrt{AB^2-BI^2}=\sqrt{10^2-6^2}=8\) (cm)
c) Tam giác ABC cân tại A => AB = AC
Ta có: BE = CF suy ra: AB+BE = AC+CF
=> AE = AF
=> Tam giác AEF cân tại A
=> \(\widehat{F}=\widehat{E}\)
Và tam giác ABC cân tại A => \(\widehat{B}=\widehat{F}\)
=> \(\widehat{ABC}=\widehat{F};\widehat{ACB}=\widehat{F}\)
Mà \(\widehat{ABC}\) và \(\widehat{F}\) ở vị trí so le trong => BC // EF
=> đpcm