cho góc xoy là góc nhọn.trên ox, oy tương ứng lấy 2 điểm A và B sao cho OA =OB.vẽ hai dường tròn tâm A, B có cùng bán kính sao cho chúng cắt nhau tại M,N nằm trong góc XOY. chứng minh:
a, ba điểm O,M,N thẳng hàng.
b, MN LÀ tia phân giác góc ANB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AI=IB\left(\text{cùng là bán kính }\left(A\right);\left(B\right)\right)\\OA=OB\\OI\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOI=\Delta BOI\left(c.c.c\right)\\ b,\Delta AOI=\Delta BOI\\ \Rightarrow\widehat{AOI}=\widehat{BOI}\\ \Rightarrow OI\text{ là p/g }\widehat{xOy}\)
) Xét
Δ
ΔOMA và
Δ
ΔOMB:
OA = OB
OM chung
AM = BM
=>
Δ
ΔOMA =
Δ
ΔOMB (c.c.c)
b) Xét
Δ
ΔONA và
Δ
ΔONB :
OA = OB
ON chung
AN = BN
=>
Δ
ΔONA =
Δ
ΔONB (c.c.c)
c) Ta có: AM = BM và M nằm trong góc xOy^ => M nằm trên tia phân giác của xOy^ (1)
và AN = BN và N nằm trong góc xOy^ => N nằm trên tia phân giác của góc xOy^ (2)
Từ (1) và (2) => O,M,N thẳng hàng
d) Xét
Δ
ΔAMN và
Δ
ΔBMN :
AM = BM
MN chung
AN = BN
=>
Δ
ΔAMN =
Δ
ΔBMN (c.c.c)
e) Ta có: AN = BN và N nằm trong AMB^
=> MN là tia phân giác của góc AMB^
a) Xét \(\Delta\)OMA và \(\Delta\)OMB:
OA = OB
OM chung
AM = BM
=> \(\Delta\)OMA = \(\Delta\)OMB (c.c.c)
b) Xét \(\Delta\)ONA và \(\Delta\)ONB :
OA = OB
ON chung
AN = BN
=> \(\Delta\)ONA = \(\Delta\)ONB (c.c.c)
c) Ta có: AM = BM và M nằm trong góc xOy^ => M nằm trên tia phân giác của xOy^ (1)
và AN = BN và N nằm trong góc xOy^ => N nằm trên tia phân giác của góc xOy^ (2)
Từ (1) và (2) => O,M,N thẳng hàng
d) Xét \(\Delta\)AMN và \(\Delta\)BMN :
AM = BM
MN chung
AN = BN
=> \(\Delta\)AMN = \(\Delta\)BMN (c.c.c)
e) Ta có: AN = BN và N nằm trong AMB^
=> MN là tia phân giác của góc AMB^