Tìm giá trị của x để Q=0 biết:
Q=\(5\)\(x^{n+2}+32^n+2x^{n+2}+4x^n+x^{n+2}+x^n\) (n ∈ N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(N=\frac{4x+1}{4x^2+2}\Leftrightarrow N.4x^2+2N=4x+1\)
\(x^2\cdot4N-2.2x+\left(2N+1\right)=0\)
Xét \(\Delta'=4-\left(2N+1\right)\cdot4N=-8N^2-4N+4\ge0\)
Đến đây bạn chặn N là được nhé ! Ắt sẽ có Max
a) \(x^2+2x+4^n-2^{n+1}+1=0\)
\(\Leftrightarrow x^2+2x+1+2^{2n}+2^{n+1}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(2^{2n}-2\cdot2^n+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2^n-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\n=0\end{cases}}}\)
Vậy x=-1 và n=0
Các bạn giúp mình với:
Đề bài: Với giá trị nào của x thì: Q=5xn+2+3xn+2xn+2+4xn+xn+2+xn=0 (n thuộc N)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
\(n^2>!n!.n\Rightarrow n< 0\)
\(\Leftrightarrow\frac{x^3-3x-2}{x^2+4x+3}=\frac{\left(x+1\right)\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+3\right)}< 0\)
ĐK \(\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)\(N=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)}< 0\)
=>\(\orbr{\begin{cases}-2< x< -1\\x< -3\end{cases}}\)
nhầm
(x+1)^2(x-2)/(x-1)(x+3)<0<=>(x-2)/(x-1)(x+3)<0<=>x<-3 hoặc 1<x<2
(
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.