Cho tam giác ABC, Đường phân giác BD cắt trung tuyến AM tại I, đường thẳng CI cắt AB tại N. Chứng minh
\(\frac{AB}{AN}+1=\frac{2AM}{AI}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
qua B và C kẻ đường // (d) cắt AM tại P & Q => BPCQ là hình bình hành => PM = QM
ta có AB/AE = AP/AN
AC/AF = AQ/AN
=> AB/AE + AC/AF = AP/AN + AQ/AN = ( AM - PM)/AN + ( AM + QM)/AN
= 2AM/AN ( do PM = QM)
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=4,5^2+6^2=56,25\)
=>\(BC=\sqrt{56,25}=7,5\left(cm\right)\)
b: CN\(\perp\)CA
AB\(\perp\)CA
Do đó: CN//AB
Xét ΔMCN và ΔMBA có
\(\widehat{MCN}=\widehat{MBA}\)(hai góc so le trong, CN//AB)
CM=BM
\(\widehat{CMN}=\widehat{BMA}\)(hai góc đối đỉnh)
Do đó: ΔMCN=ΔMBA
=>MN=MA
=>M là trung điểm của AN
=>AN=2AM
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{4,5}=\dfrac{CD}{6}\)
mà BD+CD=BC=7,5
nên \(\dfrac{BD}{4,5}=\dfrac{CD}{6}=\dfrac{BD+CD}{4,5+6}=\dfrac{7.5}{10.5}=\dfrac{5}{7}\)
=>\(BD=5\cdot\dfrac{4.5}{7}=\dfrac{22.5}{7}=\dfrac{45}{14}\left(cm\right)\)
Vì ΔABC vuông tại A có AM là đường trung tuyến
nên \(BM=CM=\dfrac{BC}{2}=3,75\left(cm\right)\)
Vì \(BD=\dfrac{45}{14}< \dfrac{52.5}{14}=BM\)
nên D nằm giữa B và M
a) Qua P vé đường thẳng song song với BC cắt AM,AN, AC lần lượt tại I;K;E.
Gọi H là giao của PN và AC
Chứng minh I là trung điểm PE
\(\Delta\)APH cân tại A. IN là đường trung bình \(\Delta\)PEH
Tứ giác IECN là hình bình hành. Vì vậy NC=IE=PI
Ta có: \(\frac{NQ}{PQ}=\frac{MN}{PI}=\frac{MN}{NC}=\frac{MI}{AI}=\frac{NK}{AK}\)
=> QK//AP
Nên KQ _|_ OP. \(\Delta\)OPK có PN,KQ là 2 đường chéo cắt nhau tại Q
Do vậy có: QO_|_ PK. Vậy QO _|_ BC (đpcm)