Tam giác ABC cân tại C và góc C = 1000; BD là phân giác góc B. Từ A kẻ tia Ax tạo với AB một góc 300. Tia Ax cắt BD tại M, cắt BC tại E . BK là phân giác góc CBD, BK cắt Ax tại N.
a) Tính số đo góc ACM
b) So sánh MN và CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: góc ABE = góc EBC = góc ABC/2
góc ACD = góc DCB = góc ACB/2
mà góc ABC = góc ACB (tg ABC cân tại A)
=> góc ABE = góc EBC = góc ACD = góc DCB
Xét tg ABE và tg ACD có:
góc A chung
AB = AC (tg ABC cân tại A)
góc ABE = góc ACD (cmt)
=>tg ABE = tg ACD (g.c.g)
=> AE=AD
=>tg AED cân tại A
b, Xét tg ABC cân tại A có: góc ABC = góc ACB = (180 độ - góc A)/2
Xét tg AED cân tại A có: góc ADE = góc AED =(180 độ - góc A)/2
=> góc ABC = góc ADE
Mà 2 góc này ở vị trí đồng vị
=>DE//BC
c, DE//BC => góc BED = góc EBC (slt) ; góc CDE = góc DCB (slt)
=> góc BED = góc DBE (góc DBE = góc EBC)
=> tg BDE cân tại D => BE = ED (1)
DE//BC => góc CDE = góc DCB (slt)
=> góc CDE = góc DCE (góc DCE = góc DCB)
=> tg DEC cân tại E => ED = DC (2)
Từ (1),(2)=>đpcm
Hình vẽ:
A B C E F 1 2 1 1 2
\(\widehat{B_2}=\frac{180^0-\widehat{A}}{4};\widehat{C_2}=\frac{180^0-\widehat{A}}{4}\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\Delta BCE=\Delta CBD\left(g.c.g\right)\)
\(\Rightarrow\widehat{B}=\widehat{C}\)( tính chất tam giác cân )
BC là cạnh chung
\(\widehat{C_2}=\widehat{B_2}\left(cmt\right)\)
\(\Rightarrow BE=DC\)( 2 cạnh tương ứng )
\(AB=AC\)( tam giác ABC cân tại A )
\(AE=AB-BE,AD=AC-DC\)
\(\Rightarrow AE=AD\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\widehat{E_1}=\frac{180^0-\widehat{A}}{2};\widehat{B}=\frac{180^0-\widehat{A}}{2}\)
\(\Rightarrow\widehat{E_1}=\widehat{B}\)( 2 góc đồng vị )
\(\Rightarrow ED//BC\)
\(\Rightarrow\widehat{B_2}=\widehat{EDB}\left(slt\right)\)
mà \(\widehat{B_1}=\widehat{B_2}\)( vì BD là tia phân giác )
\(\Rightarrow\widehat{B_1}=\widehat{EDB}\)
\(\Rightarrow\Delta EBD\)cân tại E, ta có:
\(BE=ED\)
mà \(BE=DC\)
\(\Rightarrow BE=ED=DC\)
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
a, góc ở đỉnh bảng 80o
b, góc ở đáy bằng 55o
c,số đo góc B và góc C=(180-góc A) /2
1
a) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên tổng 2 góc ở đáy của tam giác cân đó có số đo độ là :
50 + 50 = 1000
=> Góc ở đỉnh của tam giác cân có số đo độ là :
1800 - 1000 = 800
b) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên nếu 1 góc ở đáy của tam giác đó bằng 700 => góc còn lại ở đáy phải bằng 700
c) Số đo góc B và góc C bằng :
( 180 - A)/2