Chứng minh rằng: Bình phương của một số nguyên lẻ chia cho 8 luôn có số dư là 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số lẻ là 2k+1
Ta có: (2k+1)2==(2k+1).(2k+1)=2k.(2k+1)+2k+1=2k.2k+2k+2k+1=4k2+4k+1=4.(k2+k)+1
=4.k.(k+1)+1
Vì k và k+1 là 2 số tự nhiên liên tiếp.
=>k.(k+1) chia hết cho 2
=>4.k.(k+1) chia hết cho 8
=>4.k.(k+1)+1:8(dư 1)
=>(2k+1)2:8(dư 1)
=>Bình phương của 1 số lẻ chia 8 dư 1
=>ĐPCM
Số lẻ có dạng 2k + 1
( 2 k + 1 ) ^2 = 4k^2 + 4k + 1
= 4k ( k + 1 ) + 1
Vì k ( k +1 ) là hai số tự nhiên liên tiếp => k ( k+ 1 ) chia hết cho 2 => 4 k(k + 1 ) chia hết cho 8
=> 4 k(k+ 1 ) + 1 chia 8 dư 1
=> 4k^2 + 4k + 1 chia 8 dư 1 => (2k+ 1 )^2 chia 8 dư 1 ( ĐPCM)
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
a)gọi \(2x+1\) là công thức tổng quát của số nguyên lẻ. ( x nguyên )
ta có : \(\left(2x+1\right)^2=4x^2+4x+1=4x\left(x+1\right)+1\)
ta thấy \(4x\left(x+1\right)⋮4\) \(\forall x\) mà 1 lại ko chia hết cho 4 \(\Rightarrow\left(2x+1\right)^2:4\)dư 1 \(\Rightarrow dpcm\)
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)
Bình phương của số lẻ là :
\(\left(2k+1\right)^2=4k^2+4k+1\)
Mà \(4k^2+4k⋮4\)
\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1
\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1
Chứng minh rằng:
a) Bình phương của một số lẻ chia cho 4 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có:
(2k+1)^2=4k^2+4k+1
Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.
Hay (2k+1) chia 4 dư 1
b) Bình phương của một số lẻ chia cho 8 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có: (2k+1)^2=4k^2+4k+1
Ta lại có: 4k^2+4k chia hết cho 4
4k^2+4k chia hết cho 2
Suy ra 4k^2+4k chia hết cho 8
vậy 4k^2+4k+1 chia 8 dư 1
hay (2k+1)^2 chia 8 dư 1
Gọi số nguyên lẻ đó là \(2k+1\)\(\left(k\in N\right)\)
Ta có bình phương của nó là \(\left(2k+1\right)^2\)
Biến đổi :
\(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\)
Vì \(k\)và \(k+1\)là 2 số liên tiếp nên tích của chúng chia hết cho 2
\(\Rightarrow4k\left(k+1\right)⋮\left(2\cdot4\right)=8\)
\(\Rightarrow4k\left(k+1\right)+1:8\)dư 1 (đpcm)
Gọi 1 số nguyên lẻ bất kì là: a (a thuộc N và a lẻ)
Xét: a^2-1=(a-1)(a+1) vì a lẻ nên: a-1 và a+1 chẵn
mà a-1 và a+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4 suy ra (a-1)(a+1) chia hết cho 2.4
suy ra (a-1)(a+1) chia hết cho 8
suy ra a^2 chia 8 dư 1. Nên: bình phương của 1 số lẻ chia 8 dư 1