K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

Gọi 2 số chính phương liên tiếp đó lần lượt là \(a^2\)\(\left(a+1\right)^2\)

\(\Leftrightarrow P=a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2\)

\(P=a^2+a^2+2a+1+a^2.\left(a^2+2a+1\right)\)

\(P=2a^2+2a+1+a^4+2a^3+a^2\)

\(P=a^4+2a^3+3a^2+2a+1\)

\(P=\left(a^2+a+1\right)^2\)

\(P=\left[a\left(a+1\right)+1\right]^2\)

Dễ thấy \(a\left(a+1\right)\) luôn là số chắn \(\Rightarrow a\left(a+1\right)+1\) là số lẻ.

Vậy ...

15 tháng 1 2016

gọi 4 số tn liên tiếp là A=a(a+1)(a+2)(a+3)=>A=.....
Đặt a^2+3a+1=t =>A=t^2-1 (dpcm)

2 tháng 1 2017

Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương

2 tháng 1 2017

Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)

Theo đề bài, ta có :

       \(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)

\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)

\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )

Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương 

7 tháng 7 2017

số đó là 99

7 tháng 7 2017

99 nha

14 tháng 10 2018

Trung bình cộng của chúng là:315:5

=63

13 tháng 2 2016

Bạn nào biết câu nào thì giúp mình làm câu ấy nha. 

26 tháng 6 2023

âu 1:

Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:

AB = 2 × A × B

Để giải phương trình này, ta thực hiện các bước sau:

  • Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99.
  • Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát.
  • Khi đó, ta có A < 5 (nếu A  5 thì AB  50, vượt quá giới hạn của số có hai chữ số).
  • Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.

Kết quả là AB = 16 hoặc AB = 36.

Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.

Câu 2:

Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:

  • ABC chia hết cho 9.
  • A + C chia hết cho 5.

Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:

  • Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương).
  • Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15.
  • Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9.
  • Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990.
  • Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.

Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.

Câu 3:

A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:

ab = 2m × 2n = 2(m + n)

Vì m + n là một số tự nhiên, nên ab chia hết cho 2.

B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)