K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

\(A=x^2+5y^2+4xy+2x+12\)

\(A=x^2+4xy+4y^2+2\left(x+2y\right)+1+y^2-4y+4+7\)

\(A=\left(x+2y\right)^2+2\left(x+2y\right)+1+\left(y-2\right)^2+7\)

\(A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\)

Vì \(\left(x+2y+1\right)^2\ge0\forall x;y\)và \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow A\ge7\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)

Vậy....

7 tháng 11 2021

mik tưởng 2x2 chứ

7 tháng 11 2021

ko có 2x2 đâu mik thấy đề bài nó ghi như thế. bn giúp mik nhé!

18 tháng 7 2021

có vài chỗ ko thấy

 

22 tháng 7 2021

A = x^2 + 5y^2 + 4xy - 2y - 3 

= x^2 + 4xy + 4y^2 + y^2 - 2y + 1 - 4

= ( x + 2y )^2 + ( y - 1 )^2 - 4 >= -4 

Dấu ''='' xảy ra khi y = 1 ; x = -2 

Vậy GTNN A là -4 khi x = -2 ; y = 1

4 tháng 8 2023

a) \(M=x^2-3x+10\)

\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)

\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)

\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)

Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra 

\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)

b) \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)

\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

Mà:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

4 tháng 8 2023

a

\(M=x^2-3x+10=x^2-2.\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{31}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Min M \(=\dfrac{31}{4}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

22 tháng 12 2021

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

22 tháng 12 2021

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

NV
23 tháng 12 2020

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

$A=(x^2+4y^2+4xy)+y^2+6x+16y+32$

$=(x+2y)^2+6(x+2y)+(y^2+4y)+32$

$=(x+2y)^2+6(x+2y)+9+(y^2+4y+4)+19$

$=(x+2y+3)^2+(y+2)^2+19\geq 0+0+19=19$

Vậy $A_{\min}=19$. Giá trị này đạt tại $x+2y+3=y+2=0$

$\Leftrightarrow y=-2; x=1$

12 tháng 12 2023

Giúp em với 

Bài 6 

Ạ)Cho a+4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức 

A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024

B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024

13 tháng 10 2022

Sửa đề: \(M=x^2+5y^2+4xy+2y+2018\)

\(M=x^2+4xy+4y^2+y^2+2y+1+2017\)

=(x+2y)^2+(y+1)^2+2017>=2017

Dấu = xảy ra khi y=-1 và x=-2y=2

19 tháng 4 2018

23 tháng 10 2021

a: Ta có: \(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=10