Chứng minh rằng: Nếu a, b, c >0 thì a/(b + c) + b(c+a)+ c/(b + a) >=3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
a) a<b
=>ac<bc (vi c>0)
=>ac+ab<bc+ab
=>a(b+c)<b(a+c)
=>a/b<a+c/b+c
b) lam nguoc lai cau a
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a+b+c}{b+c}-1+\frac{a+b+c}{c+a}-1+\frac{a+b+c}{a+b}-1\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng bđt Co-si cho 3 số
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\end{cases}}\)
Nhân 2 vế vào sẽ đc dpcm
Dấu "=" khi a = b = c
Anh Incursion:Em có cách khác!Anh check giúp ạ.
Chuẩn hóa a + b + c = 3.Thì BĐT trở thành:
\(\frac{a}{3-a}+\frac{b}{3-b}+\frac{c}{3-c}\ge\frac{3}{2}\)
Ta sẽ c/m: \(\frac{a}{3-a}\ge\frac{3}{4}\left(a-1\right)+\frac{1}{2}\).
Thật vậy,xét hiệu hai vế: \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\).Do a + b + c = 3 và a,b,c > 0 hiển nhiên ta có: a< 3 tức là 3 - a > 0
Suy ra \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\ge0\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm.
Dấu "=" xảy ra khi a = b = c