so sánh
A= \(\frac{10^{2018}+1}{10^{2019}+1}\)và B= \(\frac{10^{2019}-2}{10^{2018}-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có quy đồng B ta dc(-9x10^2018-19x10^2019)/(10^2019x10^2018)
tương tự với C ta có (-19x10^2018-9x10^2019)/(10^2019x10^2018)
sau khi quy đồng ta thấy mẫu của B và C giống nhau từ đó ta so sánh tử số của B và C
tử số của B=10^2018x(-9-19x10)=10^2018x-199
C=10^2018x(-19-9x10)=10^2018x-109
ta thấy -199<-109=>B<C (dpcm)
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
ta có :
\(A=\frac{10^{2019}+1}{10^{2018}+1}=\frac{10^{2018}.10+1}{10^{2018}+1}=\frac{10}{10^{2018}+1}\)
\(B=\frac{10^{2018}+1}{10^{2017}+1}=\frac{10^{2017}.10+1}{10^{2017}+1}=\frac{10}{10^{2017}+1}\)
Do \(10^{2017}+1< 10^{2018}+1\Rightarrow\frac{10}{10^{2017}+1}>\frac{10}{10^{2018}+1}\)
\(\Rightarrow A< B\)
Ta có:
10A=\(\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)
10B=\(\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1}{10^{2019}+1}+\frac{9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)
do 1=1 và \(\frac{9}{10^{2018}+1}>\frac{9}{10^{2019}+1}\)
\(\Rightarrow\)A>B
Vậy A>B
chúc bạn học tốt!
a) Ta có : \(\frac{-60}{12}=-5=-\frac{25}{5}\)
\(-0,8=-\frac{8}{10}=-\frac{4}{5}\)
Mà -25 < -4 nên \(\frac{-25}{5}< \frac{-4}{5}\)=> \(\frac{-60}{12}< -0,8\)
b) Ta có : \(\frac{2020}{2019}=1+\frac{1}{2019}\)
\(\frac{2021}{2020}=1+\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2020}{2019}>\frac{2021}{2020}\)
c) \(\frac{10^{2018}+1}{10^{2019}+1}=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)(1)
\(\frac{10^{2019}+1}{10^{2020}+1}=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+10}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)(2)
Đến đây tự so sánh rồi nhé