Chứng minh:
\(n^3-6n^2+11n-6⋮6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: A= \(n^3-6n^2+11n-6\)
<=>A=\(n^3-n^2-5n^2+5n+6n-6\)
<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)
<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)
<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)
Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24
=> A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
Ta có:
n⁴ + 6n³ + 11n² + 6n
= n⁴ + 2n³ + 4n³ + 8n² + 3n² + 6n
= (n⁴+2n³) + (4n³ + 8n²)+(3n² + 6n)
= n³(n+2) + 4n²(n+2) + 3n(n+2)
= (n+2)(n³+4n²+3n)
= (n+2)n(n²+3n)
= n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n⁴+2n³+4n³+8n²+3n²+6n chia hết cho 24.
Chúc bạn học tốt😊😊. kk mình nha😅😅
A = n4 + 6n3 + 11n2 + 6n
= n(n3 + 6n2 + 11n + 6)
= n(n3 + n2 + 5n2 + 5n + 6n + 6)
= n[n2(n + 1) + 5n(n + 1) + 6(n + 1)]
= n(n + 1)(n2 + 5n + 6)
= n(n + 1)(n + 2)(n + 3)
A = n(n + 1)(n + 2)(n + 3)
Trong đó là tích 4 số tự nhiên liên tiếp có một số chia hết cho 3 (1)
4 tự nhiên liên tiếp có hai số chẵn liên tiếp, trong 2 số chẵn liên tiếp có một số chia hết cho 2 và một số chia hết cho 4. Nên tích 4 tự nhiên liên tiếp chia hết cho 8 (2)
3 và 8 là hai số nguyên tố cùng nhau (3)
Từ (1), (2), (3) => n4 +6n3+11n2+6n chia hết cho tích (3 . 8) = 24 (đpcm)
Lời giải:
Ta có:
\(M=n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)
\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)
\(=n(n+1)(n^2+5n+6)\)
\(=n(n+1)[n(n+2)+3(n+2)]\)
\(=n(n+1)(n+2)(n+3)\)
Trong 4 số nguyên liên tiếp $n,n+1,n+2,n+3$ có ít nhất một số chia hết cho $3$ nên \(M=n(n+1)(n+2)(n+3)\vdots 3(*)\)
Trong 4 số nguyên liên tiếp, bao giờ cũng có 2 số chẵn, một số lẻ. Trong 2 số chẵn liên tiếp bào giờ cũng có 1 số chia hết cho $2$, một số chia hết cho $4$ nên \(M=n(n+1)(n+2)(n+3)\vdots (2.4=8)(**)\)
Từ $(*)$ và $(**)$, mà $(3,8)=1$ nên $M\vdots (3.8=24)$
Ta có đpcm.