Tìm nghiệm của phương trình sau: \(\frac{5}{x}+\frac{4}{x+1}=\frac{3}{x+2}+\frac{2}{x+3}\)
Chỉ cần nêu đáp án thôi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
\(\frac{x+4}{5}-x+4>\frac{x}{3}-\frac{x-2}{2}\)
<=>(x+4).6-30.(x+4)>10x-15(x-2)
<=>-24(x+4)>10x-15x+30
<=>-24x-96>-5x+30
<=>-24x+5x>30+96
<=>-19x>126
<=>x<126/19<7
<=>x<7
\(x-\frac{x-3}{8}\ge3-\frac{x-3}{12}\)
<=>24x-3(x-3)>72-2(x-3)
<=>24x-3x+9>72-2x+6
<=>21x+2x>78-9
<=>23x>69
<=>x>3
=>3<x<7
=>x={4;5;6}
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
bài này bạn lấy các phân số nhân thêm với 1 rồi bỏ nhân tử chung ra ngoài
\(\frac{5}{x}\)+ \(\frac{4}{x+1}\)= \(\frac{3}{x+2}\)+ \(\frac{2}{x+3}\)
ĐKXĐ: x\(\ne\)0,-1,-2,-3
(=) \(\frac{5}{x}\)\(+1\)+\(\frac{4}{x+1}\)\(+1\)=\(\frac{3}{x+2}\)\(+1\)+\(\frac{2}{x+3}\)\(+1\)
(=) \(\frac{5}{x}\)\(+\)\(\frac{x}{x}\)\(+\)\(\frac{4}{x+1}\)\(+\)\(\frac{x+1}{x+1}\)=\(\frac{3}{x+2}\)\(+\)\(\frac{x+2}{x+2}\)\(+\)\(\frac{2}{x+3}\)\(+\)\(\frac{x+3}{x+3}\)
(=) \(\frac{5+x}{x}\)\(+\)\(\frac{5+x}{x+1}\)=\(\frac{5+x}{x+2}\)\(+\)\(\frac{5+x}{x+3}\)
(=) \(\frac{5+x}{x}\)\(+\)\(\frac{5+x}{x+1}\)\(-\)\(\frac{5+x}{x+2}\)\(-\)\(\frac{5+x}{x+3}\)\(=0\)
(=) \(\left(5+x\right)\)\(\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\)\(=0\)
(=) \(\orbr{\begin{cases}5+x=0\\\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\end{cases}}=0\)(Loại vì \(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\)> \(0\))
(=) \(x=-5\)
Vậy phương trình có nghiệm là x = -5