Cho hinh thang ABCD, AB//CD co AB=4cm, CD=9cm, goc ADB=goc BCD
a) chung minh tam giac ABD dong dang voi tam giac BDC
b) BD=...?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
cho xin hk mk giai moi nhanh
a) vì AB song song CD (gt) => góc ABD = góc BDC ( hai góc so le trong)
xét tam giác ABD và tam giác BDC có:
góc DAB = góc DBC(gt)
góc ABD = góc BDC (cmt)
=> tam giác ABD đồng dạng với tam giác BDC(g.g)
b) ta có tam giác ABD đồng dạng với tam giác BDC (cmt)
=> \(\frac{AB}{BD}\)= \(\frac{DB}{DC}\) (định nghĩa 2 tam giác đồng dạng)
=>BD2 = AB. DC
=> BD2 = 4 . 9= 36 =>BD = 6cm