K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

ko hiểu

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{1+y+1+z+1+x}=\frac{(x+y+z)^2}{(x+y+z)+3}\)

Áp dụng BĐT Cauchy:

\(x+y+z\geq 3\sqrt[3]{xyz}=3\)

Do đó:

\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{(x+y+z)+3}\geq \frac{(x+y+z)^2}{(x+y+z)+(x+y+z)}=\frac{x+y+z}{2}\geq \frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

P/s: Bạn chú ý lần sau gõ tiêu đề bằng công thức toán !!!

5 tháng 11 2019

nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id

5 tháng 11 2019

Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> Đặt: x + y+z =t => \(t\ge3\)

\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)

\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)

\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)

\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)

"=" xảy ra <=> x = y = z =1

6 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(x+y+z\ge3\sqrt[3]{xyz}\)hay \(1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\sqrt[3]{xyz}\le\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)

(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))

Lại áp dụng BĐT Cô - si cho 3 số không âm là x + y; y + z; x + z, ta được:

\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Rightarrow2\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)(Vì x + y + z = 1)

\(\Rightarrow27\left(x+y\right)\left(y+z\right)\left(x+z\right)\le8\)(lập phương hai vế)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\le\frac{8}{27}\)

(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))

\(\Rightarrow S\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))

2 tháng 12 2019

Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)

Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)