K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

Thử cách này  xem.Mình paste luôn ảnh cho bn dễ xem:

11 tháng 3 2019

Ơ,olm ko cho past cx ko cho gửi link.Đăng link thường vậy:https://imgur.com/If8PtE2

31 tháng 3 2017

ko ai giúp đâu

31 tháng 3 2017

bài này mk bt lm nhưng mk đag trog trạng thái mệt mỏi nên ngại lắm, để lúc nào rảnh mk giúp bn nhé!

27 tháng 4 2017

Giải bài 8 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giả sử ta có hai đường xiên SM, SN và các hình chiếu HM, HN của chúng trên mp (α).

Vì SH ⊥ mp(α)

⇒ SH ⊥ HM và SH ⊥ HN

⇒ ΔSHN và ΔSHM vuông tại H.

Áp dụng định lí Py-ta- go vào hai tam giác vuông này ta có:

 

⇒   S M 2   =   S H 2   +   H M 2 ;     v à   S N 2   =   S H 2   +   H N 2 .     a )   S M   =   S N   ⇔   S M 2   =   S N 2   ⇔   H M 2   =   H N 2   ⇔   H M   =   H N .     b )   S M   >   S N   ⇔   S M 2   >   S N 2   ⇔   H M 2   >   H N 2   ⇔   H M   >   H N .

 

18 tháng 3 2020

Định lý Pytago được sử dụng cho loại tam giác vuông.

 

_Bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.

 CÔNG THỨC :

\(^{a^2+b^2=c^2}\) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)   

                     k cho mk nha!Hok tốt !!!

18 tháng 3 2020

Hình vẽ bạn tự thêm điểm nha!

20 tháng 3 2016

Nếu :  ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;

AM ≤ AC

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC

+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH

Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤ AC

5 tháng 8 2017

Giả sử   ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;

AM ≤ AC

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC

+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH

Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤  AC

15 tháng 4 2018

ta có HB và HC là hai hình chiếu của AB và AC(1)

. Mà tam giác ABC cân tại A => AB=AC(2)

Từ (1) và (2) => HB=HC

15 tháng 4 2018

ta có AB=AC(tam giác ABC cân)

=> HB=HC ( t/c) (DPCM)

31 tháng 3 2017

Giải bài 8 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Giả sử ta có hai đường xiên SA, SB và các hình chiếu HA, HB của chúng trên mp(α)

Giả sử HA = HB

Vì SH ⊥ mp(α) nên SH ⊥ HA và SH ⊥ SB và các tam giác SHA, SHB là các tam giác vuông. Hai tam giác vuông SHA, SHB có canh SH chung và HA = HB nên :

ΔSHA = ΔSHB SA = SB

Ngược lại nếu SA = SB thì ΔSHA = ΔSHB ⇒ HA = HB

Kết quả, ta có HA = HB SA= SB (đpcm)

b) Giả sử có hai đường xiên SA, SC và các hình chiếu HA, HC của chúng trên mp(α) với giả thiết HC > HA.

Trên đoạn HC, lấy điểm B' sao cho HA' = HA ⇒ HC > HA'. Như vậy, theo kết quả câu a) ta có SA' = SA. Ta có trong các tam giác vuông SHB', SHC thì :

SC2= SH2 + HC2

SA2 = SH2 + HA2

Vì HC > HA' nên SC2 > SA2 ⇒ SC > SA

Suy ra SC > SA

Như vậy HC > HA ⇒ SC > SA

Lí luận tương tự, ta có : SC > SA ⇒ HC > HA

Kết quả : HC > HA ⇔ SC > SA

31 tháng 3 2017

a) Gọi SN là một đường xiên khác. Xét hai tam giác vuông SHM và SHN có SH chung. Nếu SM = SN => tam giác SHM = tam giác SHN => HM = HN, ngược lại nếu HM = HN thì tam giác SHM = tam giác SHNSM => SM = SN.

b) Xét tam giác vuông SHM và SHN có SH chung. Nếu SN > SM thì \(HN^2-SN^2-SH^2\) => \(SM^2-SH^2=HM^2\) => HN > HM. Chứng minh tương tự cho chiều ngược lại.

8 tháng 3 2019

SGK toán 7