K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

mọi người ai làm được thì giúp mình nha 

8 tháng 1 2020

hình vẽ : 

B A C D E 1 2

giải :

a, xét \(\Delta ABC\) và \(\Delta EBD\)có :

AB = EB ( do BC = 2AB )

\(\widehat{B_1}=\widehat{B_2}\) ( gt )

BD cạnh chung 

\(\Rightarrow\Delta ABC=\Delta EBD\left(c.g.c\right)\)

do đó \(\widehat{ADB}=\widehat{EDB}\)

=> DB là tia phân giác của \(\widehat{ADE}\)

b, xét tam giác ABD và tam giác EBD có :

  AB = EB ( gt )

  \(\widehat{B_1}=\widehat{B_2}\)

 BD cạnh chung

=> tam giác ABD = tam giác EBD ( c.g.c )

=> \(\widehat{DEB}=\widehat{DAB}=90^0\) Mà \(\widehat{DEB}+\widehat{DEC}=180^0\)

\(\Rightarrow\widehat{AEC}=90^0\)

Xét tam giác EDB và EDC có :

EB = EC ( gt )

\(\widehat{DEB}=\widehat{DEC}=90^0\)

ED chung

=> tam giác EDB = tam giác EDC ( c.g.c )

=> DB = DC Và \(\widehat{C}=\widehat{B}_2\)

c, ta có : \(\widehat{B_1}=\widehat{B}_2\) mà \(\widehat{B_2}=\widehat{C}\) Do đó \(\widehat{B}+\widehat{B_1}+\widehat{B_2}=2\widehat{C}\)

Trong tam giác vuông ABC thì  \(\widehat{B}+\widehat{C}=90^0\) Hay \(3\widehat{C}=90^0\)

\(\Rightarrow\widehat{C}=30^0;\widehat{B}=30^0.2=60^0\)

  

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

14 tháng 5 2022

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

14 tháng 5 2022

Câu 3 là phần c nha

 

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều