Cho p là só nguyên tố lớn hơn 3. Chứng minh rằng : p2-1 chia hết cho 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
p là số nguyên tố lớn hơn 3 nên p chia 3 dư 1 hoặc 2 và p là số lẻ
=>p-1 là số chẵn và p+1 cũng là số chẵn
=>(p-1)(p+1) chia hết cho 2*4=8(Vì p-1 và p+1 là hai số chẵn liên tiếp nên tích của chúng chia hết cho 8)
=>\(p^2-1⋮8\)(1)
TH1: p=3k+1
\(p^2-1=\left(p-1\right)\left(p+1\right)\)
\(=\left(3k+1-1\right)\left(3k+1+1\right)\)
\(=3k\cdot\left(3k+2\right)⋮3\)(2)
Từ (1),(2) suy ra \(p^2-1⋮BCNN\left(3;8\right)=24\)(4)
TH2: p=3k+2
\(p^2-1=\left(p-1\right)\left(p+1\right)\)
\(=\left(3k+2-1\right)\left(3k+2+1\right)\)
\(=3\left(k+1\right)\left(3k+1\right)⋮3\)(3)
Từ (1) và (3) suy ra \(p^2-1⋮BCNN\left(3;8\right)=24\)(5)
Từ (4) và (5) suy ra \(p^2-1⋮24\)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.
Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
TH1: $p=6k+1$ thì:
$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$
Nếu $k$ lẻ thì $3k+1$ chẵn.
$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$
Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$
TH2: $p=6k+5$
$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn
$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Nếu $k$ lẻ thì $k+1$ chẵn
$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
Vì p là số nguyên tố >3 nên p là số lẻ
→ 2 số p-2,p+1 là 2 số chẵn liên tiếp
→(p-2)(p+1) ⋮ cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên
→ p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 → (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)
+) Với p=3k+2 → (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)
Từ (*) và (**) →(p-2)(p+1) ⋮ 3 (2)
Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24
đề kiểm tra học kì 2 lớp 6 phải ko? chữa lại làm zì nữa. em tui hôm qua cũng không làm được
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thìP-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thìP+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3