K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

Ta có :

\(\left\{{}\begin{matrix}a^3-3ab^2=233\\b^3-3a^2b=2010\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a^3-3ab^2\right)^2=233^2\\\left(b^3-3a^2b\right)^2=2010^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^6-6a^4b^2+9a^2b^4=233^2\\b^6-6a^2b^4+9a^4b^2=2010^2\end{matrix}\right.\)

\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=233^2+2010^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^3=4094389\)

\(\Leftrightarrow a^2+b^2=159,97...\)

24 tháng 11 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)

T = a2 + b2 + c2 = (a + b+ c)2 - 2(ab + bc + ca) = 1 - 0 = 1

AH
Akai Haruma
Giáo viên
5 tháng 3 2017

Bài 1)

Đưa về đồng bậc:

\(\left\{{}\begin{matrix}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{matrix}\right.\Rightarrow-9\left(4x^3-y^3\right)=\left(x+2y\right)\left(52x^2-82xy+21y^2\right)\)

\(\Leftrightarrow 8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow (4x-y)(x-y)(2x+3y)\Rightarrow \) \(\left[{}\begin{matrix}x=y\\4x=y\\2x=-3y\end{matrix}\right.\)

Thay từng TH vào hệ phương trình ban đầu ta thấy chỉ TH \(x=y\) thỏa mãn.

\(\Leftrightarrow (x,y)=(1,1),(-1,-1)\)là nghiệm của HPT

AH
Akai Haruma
Giáo viên
5 tháng 3 2017

Bài 2)

Đặt \(P=a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\Rightarrow 4P=4a+4b+4c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(\Leftrightarrow 4P=(a+2b+3c)+\left(3a+\frac{3}{a}\right)+\left(2b+\frac{9}{2b}\right)+\left(c+\frac{4}{c}\right)\)

Áp dụng bất đẳng thức AM-GM:

\(\left\{{}\begin{matrix}3a+\dfrac{3}{a}\ge6\\2b+\dfrac{9}{2b}\ge6\\c+\dfrac{4}{c}\ge4\end{matrix}\right.\)\(\Rightarrow 4P\geq (a+2b+3c)+6+6+4\geq 10+6+6+4=26\)

\(\Leftrightarrow P\geq \frac{13}{2}\) (đpcm)

Dấu bằng xảy ra khi \((a,b,c)=(1,\frac{3}{2},2)\)

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\) Bài 3: Gải các...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5

Theo bài ra ta có :

 \(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

\(=233^2+2010^2\)

\(\Rightarrow\left(a^2+b^2\right)^3=4094389\)

\(\Rightarrow a^2+b^2=\sqrt[3]{4094389}\)

2 tháng 8 2016

gửi câu hỏi rồi tự trả lời luôn (tự kỉ) à  ?

NV
23 tháng 7 2020

\(\Leftrightarrow\left\{{}\begin{matrix}a^3+15ab^2=2\\6a^2b+10b^3=2\end{matrix}\right.\)

\(\Rightarrow a^3+15ab^2-6a^2b-10b^3=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-5ab+10b^2\right)=0\)

\(\Leftrightarrow a=b\)

Thay vào pt đầu:

\(a^3+15a^3=2\Rightarrow a^3=\frac{1}{8}\Rightarrow a=b=\frac{1}{2}\)

25 tháng 1 2021

2: Điểm rơi... đẹp!

Áp dụng bất đẳng thức AM - GM:

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).

\(\Rightarrow a^2+b^2+c^2\ge14\).

Đẳng thức xảy ra khi a = 1; b = 2; c = 3.

25 tháng 1 2021

1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\)

Đẳng thức xảy ra khi x = 6 hoặc x = 2

\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).

Đẳng thức xảy ra khi x = 4.