K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(\frac{x+4}{7+y}=\frac{4}{7}\Leftrightarrow\frac{x+4}{4}=\frac{y+7}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x+4}{4}=\frac{y+7}{7}=\frac{x+4+y+7}{4+7}=\frac{11+4+7}{4+7}=2\)

\(\Rightarrow\hept{\begin{cases}x+4=2.4=8\\y+7=2.7=14\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=7\end{cases}}}\)

3 tháng 3 2019

\(\frac{x+4}{7+y}=\frac{4}{7}\)

\(\Rightarrow\left(x+4\right)\cdot7=\left(7+y\right)\cdot4\)

\(\Rightarrow x7+28=y4+28\)

\(\Rightarrow x7=y4\)

\(x+y=11\Rightarrow x=11-y\)

\(\left(11-y\right)\cdot7=4y\)

\(\Rightarrow77-7y=4y\)

\(\Rightarrow77=11y\)

\(\Rightarrow y=7\)

\(x=11-7=4\)

10 tháng 2 2019

Lời giải (lớp 7)

Theo t/c tỉ lệ thức: \(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow\frac{4+x}{4}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{4+x}{4}=\frac{7+y}{7}=\frac{7+4+x+y}{4+7}=\frac{22}{11}=2\)

Suy ra \(4+x=2.4=8\Rightarrow x=8-4=4\)

Suy ra \(7+y=2.7=14\Leftrightarrow y=7\)

10 tháng 2 2019

Lời giải (lớp 6)

Từ đề bài suy ra: \(7\left(4+x\right)=4\left(7+y\right)\) và \(y=11-x\)

\(\Leftrightarrow7\left(4+x\right)=4\left(7+11-x\right)\)

\(\Leftrightarrow28+7x=4\left(18-x\right)\)

\(\Leftrightarrow28+7x=72-4x\)

\(\Leftrightarrow11x=44\Leftrightarrow x=4\)

Thay vào tìm y=)

4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.

22 tháng 7 2016

BẠN ƠI MÌNH CHỈ GIẢI VÀI CÂU THÔI NHA:

7) 2x = 3y = 5z và x - y + z = -33

  Ta có: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x - y + z = -33

Theo tính chất của dãy tỉ số = nhau, ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

Do đó:

\(\frac{x}{15}=-3\Rightarrow x=-45\)

\(\frac{y}{10}=-3\Rightarrow y=-30\)

\(\frac{z}{6}=-3\Rightarrow z=-18\)

vậy x=-45    y=-30     z=-18 

22 tháng 7 2016

8) 5x = 8y = 20z và x-y-z =3

ta có: \(\frac{x}{160}=\frac{y}{100}=\frac{z}{40}\) và x-y-z = 3

Theo t/c của dãy tỉ số = nhau, có:

\(\frac{x}{160}=\frac{y}{100}=\frac{z}{40}=\frac{x-y-z}{160-100-40}=\frac{3}{20}=0,15\)

Do đó:

\(\frac{x}{160}=3\Rightarrow x=24\) 

\(\frac{y}{100}=3\Rightarrow y=15\)

\(\frac{z}{40}=3\Rightarrow z=6\)

vậy x= 24     y=15     z=6

22 tháng 5 2019

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

25 tháng 5 2019

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230

6 tháng 10 2018

a) ĐKXĐ: \(x\ne-1\)

Ta có:

\(\frac{x+1}{8}=\frac{8}{x+1}\)

\(\Rightarrow\left(x+1\right)^2=8^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}\left(TMĐKXĐ\right)}\)

\(\)

6 tháng 10 2018

a, \(\frac{x+1}{8}=\frac{8}{x+1}\)

\(\Leftrightarrow\left(x+1\right)^2=8.8\)

\(\Leftrightarrow\left(x+1\right)=\pm8\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}}}\)

b, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\left(2x+3y=186\right)\)

Theo đề bài ta có:

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3.5}=\frac{y}{4.5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.4}=\frac{z}{7.4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y}{90}=\frac{186}{90}=\frac{31}{15}\)

\(\Rightarrow\frac{2x}{30}=\frac{31}{15}\Rightarrow2x=62\Rightarrow x=31\)

\(\frac{3y}{60}=\frac{31}{15}\Rightarrow3y=124\Rightarrow y=\frac{124}{3}\)

Mà \(\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{\frac{124}{3}}{20}=\frac{z}{28}\Rightarrow\frac{31}{15}=\frac{z}{28}\)

Từ đây bạn tìm nốt z nha

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405