Tìm x biết
(-1/3_x)_1/9=-2/45
Ai làm đúng mk tick điiểm nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 32019-32018+32017-32016+...+33-32+3-1
3A=32020-32019+32018-32017+...+34-33+32-3
4A=32020-1
4A+1=32020
X=2020
Ta có
\(A=3^{2019}-3^{2018}+3^{2017}-3^{2016}+...+3^3-3^2+3-1\)
\(\Rightarrow3A=3^{2020}-3^{2019}+3^{2018}-3^{2016}+....+3^2-3\)
\(\Rightarrow3A+A=4A=3^{2020}-1\)
\(\Rightarrow4A+1=3^x\)
\(\Rightarrow\left(3^{2020}-1\right)+1=3^x\)
\(\Rightarrow3^{2020}=3^x\)
\(\Rightarrow x=2020\)
\(\dfrac{1}{3\times9}+\dfrac{1}{9\times15}+\dfrac{1}{15\times21}+\dfrac{1}{21\times27}+...+\dfrac{1}{39\times45}\)
\(=\dfrac{1}{6}\times\left(\dfrac{6}{3\times9}+\dfrac{6}{9\times15}+\dfrac{6}{15\times21}+\dfrac{6}{21\times27}+...+\dfrac{6}{39\times45}\right)\)
\(=\dfrac{1}{6}\times\left(\dfrac{1}{3}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{27}+...+\dfrac{1}{39}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{6}\times\left(\dfrac{1}{3}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{6}\times\dfrac{14}{45}\)
\(=\dfrac{7}{135}\)
#AvoidMe
=1/6(6/3*9+6/9*15+...+6/39*45)
=1/6(1/3-1/9+1/9-1/15+...+1/39-1/45)
=1/6*14/45
=14/270=7/135
a) Ta có : 11 = 1 . 11 = 11 . 1
Lập bảng :
x | 1 | 1 |
y | 11 | 1 |
Vậy ...
b) Ta có : 12 = 1. 12 = 12.1 = 2.6 = 6.2 = 3.4 = 4.3
Do 2x + 1 là số lẽ => (2x + 1)(3y - 2) = 1 . 12 = 3.4
Lập bảng :
2x + 1 | 1 | 3 |
3y - 2 | 12 | 4 |
x | 0 | 2 |
y | ko thõa mãn đề bài | 2 |
Vậy...
c ) 1 + 2 + 3 + ........ + X = 55
<=> ( 1 + X ) x ( X : 2 ) = 55
<=> ( 1 + X ) x \(\frac{X}{2}\) = 55
<=> \(\frac{\left(1+X\right)\times X}{2}=55\)
\(\Leftrightarrow\frac{X+X^2}{2}=55\)
\(\Leftrightarrow X^2+X=110\)
\(\Leftrightarrow X^2+X-110=0\)
\(\left(a=1;b=1;c=-110\right)\)
\(\Delta=b^2-4ac\)
\(\Delta=1^2-4.1.\left(-110\right)\)
\(\Delta=441\)
\(\sqrt{\Delta}=\sqrt{441}=21\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+21}{2.1}=10\) ( nhận ) ( vì 10 là số tự nhiên thuộc N nên nhận )
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-21}{2.1}=-11\) ( loại ) ( vì -11 không phải là số tự nhiên , không thuộc N nên loại )
Vậy x = 10
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(=>\frac{y-x}{xy}=\frac{1}{xy}\)
\(=>xy^2-x^2y=xy\)
\(=>xy^2-x^2y-xy=0\)
\(=>x.\left(y^2-xy-y\right)=0\)
\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)
Ta thấy \(y^2-xy-y=0\)
\(=>y.\left(y-x-y\right)=0\)
\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)
Từ 1 và 2 => x = y = 0
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)
\(\Rightarrow y-x=1\)
Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)
Tìm giá trị nhỏ nhất biết:
A=x^2+3./y-2/-1
làm nhanh hộ mk, mk cần gấp
làm nhanh + đúng mk sẽ tick cho
Ta có: \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
Vậy GTNN của A = -1 khi x = 0 và y = 2
\(A=x^2+3\left|y-2\right|-1\)
Có \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow A\ge0+0-1=-1\)
Dấu '=" xảy ra khi MinA=-1\(\Leftrightarrow x=0;y=2\)
\(\left(\frac{-1}{3}-x\right)-\frac{1}{9}=\frac{-2}{45}\)
=\(\left(\frac{-1}{3}-x\right)=\frac{-2}{45}+\frac{1}{9}=\frac{1}{15}\)
=>\(x=\frac{-1}{3}-\frac{1}{15}\)
=>\(x=\frac{-2}{5}\)