xác ddingj phân số a/b biết a,b thuộc Nsao, a+3=b, BC(a,b)=210,a,b bé hơn hoặc bằng 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
ghi đề lại nha bạn. Không hiểu đề thì ai mà giúp bạn giải đươc
CẢM ƠN
Theo đề bài, ta có:
-3\(\ge\)|a+1|+|b-2|
1\(\ge\)|a+1|+|b-2|
Do|a+1|\(\ge\)0
|b-2| \(\ge\)0
=>|a+1|+|b-2|\(\ge\)0
=> |a+1|+|b-2|=0 hoặc |a+1|+|b-2|=1
Xét |a+1|+|b-2| = 0:
Vì |a+1|\(\ge\)0,|b-2|\(\ge\)0
Mà|a+1|+|b-2|=0
=> |a+1|=0 và |b-2|=0
=> a = -1 và b = 2
Xét |a+1|+|b-2|=1:
Vì|a+1|+|b-2|=1
nên |a+1|=0 thì |b-2|=1 và nếu |a+1|=1 thì |b-2|=0
Số nguyên a,b | |a+1|=0 và|b-2|=1 | |a+1|=1 và |b-2|=0 |
số nguyên a | => a=-1 | a=0 |
số nguyên b | =>b=3 | b=2 |
Vậy ta có các cặp a;b tương ứng:(a,b)\(\in\){(-1;2);(-1;3);(0;2)}
Theo đề bài, ta có:
-3≥|a+1|+|b-2|
1≥|a+1|+|b-2|
Do|a+1|≥0
|b-2| ≥0
=>|a+1|+|b-2|≥0
=> |a+1|+|b-2|=0 hoặc |a+1|+|b-2|=1
Xét |a+1|+|b-2| = 0:
Vì |a+1|≥0,|b-2|≥0
Mà|a+1|+|b-2|=0
=> |a+1|=0 và |b-2|=0
=> a = -1 và b = 2
Xét |a+1|+|b-2|=1:
Vì|a+1|+|b-2|=1
nên |a+1|=0 thì |b-2|=1 và nếu |a+1|=1 thì |b-2|=0
Số nguyên a,b | |a+1|=0 và|b-2|=1 | |a+1|=1 và |b-2|=0 |
số nguyên a | => a=-1 | a=0 |
số nguyên b | =>b=3 | b=2 |
Vậy ta có các cặp a;b tương ứng:(a,b)∈{(-1;2);(-1;3);(0;2)}
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2