Cho a, b, c > 25/4, tìm GTNN của biểu thức: M=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Việt Lâm DƯƠNG PHAN KHÁNH DƯƠNG Mysterious Person help
Do \(a,b,c>\dfrac{25}{4}\Rightarrow\) các mẫu số đều dương
Áp dụng BĐT Cauchy:
\(M\ge3\sqrt[3]{\dfrac{abc}{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{5\left(2\sqrt{b}-5\right).5\left(2\sqrt{c}-5\right).5\left(2\sqrt{a}-5\right)}}\)
Ta có: \(\left\{{}\begin{matrix}5\left(2\sqrt{a}-5\right)\le\dfrac{\left(5+2\sqrt{a}-5\right)^2}{4}=a\\5\left(2\sqrt{b}-5\right)\le\dfrac{\left(5+2\sqrt{b}-5\right)^2}{4}=b\\5\left(2\sqrt{c}-5\right)\le\dfrac{\left(5+2\sqrt{c}-5\right)^2}{4}=c\end{matrix}\right.\)
\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{abc}}=3.5=15\)
\(\Rightarrow M_{min}=15\) khi \(a=b=c=25\)
Bạn áp dụng BĐT \(xy\le\dfrac{\left(x+y\right)^2}{4}\)
Dấu "=" xảy ra khi x=y
Hơn nữa, cũng áp dụng để tìm dấu "=" cuối bài, ta có \(5=2\sqrt{a}-5\Rightarrow2\sqrt{a}=10\Rightarrow a=25\), đó là lý do tại sao biết đẳng thức xảy ra tại a=b=c=25
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Cho a, b, c > 25/4, tìm GTNN của biểu thức: M=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
\(\frac{a^4}{b^2c}+b+b+c\ge4\sqrt[4]{\frac{a^4b^2c}{b^2c}}=4a\)
Tương tự: \(\frac{b^4}{c^2a}+2c+a\ge4b\) ; \(\frac{c^4}{a^2b}+2a+b\ge4c\)
Cộng vế với vế:
\(VT+3\left(a+b+c\right)\ge4\left(a+b+c\right)\Rightarrow VT\ge a+b+c=5\)
Dấu "=" xảy ra khi \(a=b=c=\frac{5}{3}\)