Giải hệ pt:
\(\left\{{}\begin{matrix}1+3xy=3x+y\\x^2+y^2=1\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=4xy\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4xy\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{y+1}\right)\left(\dfrac{y}{x+1}\right)=\dfrac{1}{4}\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=\dfrac{1}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x}{y+1}=u\\\dfrac{y}{x+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=\dfrac{1}{2}\\uv=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow u^2-2uv+v^2=0\Leftrightarrow u=v=\pm\dfrac{1}{2}\)
TH1: \(u=v=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=\dfrac{1}{2}\\\dfrac{y}{x+1}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=1\\x-2y=-1\end{matrix}\right.\) \(\Leftrightarrow...\)
Th2: \(u=v=-\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=-\dfrac{1}{2}\\\dfrac{y}{x+1}=-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+y=-1\\x+2y=-1\end{matrix}\right.\) \(\Leftrightarrow...\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-448y^3=-3x+6y\\96=385x^2-16y^2\end{matrix}\right.\)
\(\Rightarrow96\left(x^3-448y^3\right)=\left(-3x+6y\right)\left(385x^2-16y^2\right)\)
\(\Leftrightarrow\left(x-4y\right)\left(417x^2+898xy+3576y^2\right)=0\)
\(\Leftrightarrow x-4y=0\)
\(\Leftrightarrow x=4y\)
Thế vào \(385x^2-16y^2=96\)
\(\Rightarrow...\)
b.
ĐKXĐ: \(x+y\ne0\)
\(\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=x^2+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x^3-y^3\right)\left(x+y\right)=1\\1=\left(x^2+y^2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left(3x^3-y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)\left(2x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
Thế vào \(x^2+y^2=1\)...
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)^2-2xy=4\)
\(\Leftrightarrow xy\left(x+y-2\right)+\left(x+y-2\right)\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+y+xy+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-2=0\left(1\right)\\x+y+xy+2=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow y=2-x\) thay vào pt đầu: ....
Xét (2): kết hợp với pt đầu ta được:
\(\left\{{}\begin{matrix}x+y+xy+2=0\\\left(x+y\right)^3-3xy\left(x+y\right)-3xy=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+2=0\\a^3-3ab-3b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1\right)-3b\left(a+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1-3b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(x^3+y^3+3xy=1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy=0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y-1=0\\x=y=-1\end{matrix}\right.\)
TH1: \(x=y=-1\) thế vào pt dưới kiểm tra ko thỏa mãn
TH2: \(y=1-x\) thế vào pt dưới:
\(\sqrt{\left(4-x\right)\left(x+12\right)}=\dfrac{27}{x+3}\) (ĐKXĐ: \(-12\le x\le4;x\ne-3\))
- Với \(x< -3\) pt vô nghiệm, với \(x>-3\)
Đặt \(x+3=t>0\)
\(\Rightarrow\sqrt{\left(t+9\right)\left(7-t\right)}=\dfrac{27}{t}\Leftrightarrow64-\left(t+1\right)^2=\dfrac{27^2}{t^2}\)
\(\Leftrightarrow64=\dfrac{27^2}{t^2}+\left(t+1\right)^2=\dfrac{25^2}{t^2}+t^2+\dfrac{104}{t^2}+t+t+1\ge2\sqrt{\dfrac{25^2t^2}{t^2}}+3\sqrt[3]{\dfrac{104t^2}{t^2}}+1>65\) (vô lý)
Vậy hệ vô nghiệm
a \(\Leftrightarrow\left\{{}\begin{matrix}6x^2-3xy+x=1-y\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow6x^2-3xy+x-1+y=0\)
\(\Leftrightarrow\left(6x^2+x-1\right)-\left(3xy-y\right)=0\) \(\Leftrightarrow\left(6x^2+3x-2x-1\right)+y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)+y\left(3x-1\right)=0\) \(\Leftrightarrow\left(3x-1\right)\left(2x+1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x+y=-1\end{matrix}\right.\)
*Nếu 3x-1=0⇔x=\(\dfrac{1}{3}\) Thay vào (2) ta được:
\(\dfrac{1}{9}+y^2=1\Leftrightarrow y^2=\dfrac{8}{9}\Leftrightarrow y=\dfrac{\pm2\sqrt{2}}{3}\)
*Nếu 2x+y=-1\(\Leftrightarrow y=-1-2x\) Thay vào (2) ta được :
\(\Rightarrow x^2+\left(-2x-1\right)^2=1\Leftrightarrow x^2+4x^2+4x+1=1\Leftrightarrow5x^2+4x=0\Leftrightarrow x\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-4}{5}\end{matrix}\right.\)
.Nếu x=0⇒y=0
.Nếu x=\(\dfrac{-4}{5}\) \(\Rightarrow y=-1+\dfrac{4}{5}=-\dfrac{1}{5}\) Vậy...
Câu b)
\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x\left(x-1\right)+y\left(x-1\right)\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+y\right)=0\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)
Để (x-1)(2x+y) = 0 thì: \(\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=1\\2x+y=0\end{matrix}\right.\)
Thay x=1 vào PT (2) ta có:
(2) ⇔12-3.1.y+4=0
⇔1-3y +4=0
⇔-3y+5=0
⇔y=\(\dfrac{5}{3}\)
Vậy HPT có nghiệm (x:y) = (1;\(\dfrac{5}{3}\))
\(1+3xy=3x+y\Leftrightarrow3x\left(y-1\right)-\left(y-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(y-1\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\y=1\end{matrix}\right.\)
- Với \(x=\dfrac{1}{3}\) thay vào pt dưới được:
\(y^2=1-x^2=\dfrac{8}{9}\Rightarrow y=\pm\dfrac{2\sqrt{2}}{3}\)
- Với \(y=1\) thay vào pt dưới được:
\(x^2=1-y^2=0\Rightarrow x=0\)