K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

\(999993^{1999}=999993^{1996}.999993^3=\)

\(=\left(999993^4\right)^{499}.999993^3\)

\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1

\(999993^3\) có tận cùng là 7

\(\Rightarrow999993^{1999}\) có tận cùng là 7

Ta có

\(555557^{1997}=555557^{1996}.555557=\)

\(=\left(555557^4\right)^{499}.555557\)

\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1

\(555557\) có tận cùng là 7

\(\Rightarrow555557^{1997}\) có tận cùng là 7

\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)

27 tháng 1 2022

quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé

4 tháng 12 2015

Ta thấy:  9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5

4 tháng 12 2015

Ta có: A=9999931999-5555571997

=> A=.....9-......7

=> A=.....2

Vậy A có tận cùng = 2

Mà số có tận cùng bằng 2 ko bao giờ chia hết cho 5

xem lại đề

17 tháng 11 2015

a, 995 - 984 + 973 - 962 
= (…9 ) - (…6) + (…3) - (…6)
= 0 
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5                                                                                                 tick minh nha

17 tháng 11 2015

1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5 
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7 
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5. 

19 tháng 3 2016

chứng minh chữ số tận cùng

19 tháng 3 2016

mình làm xong jui

29 tháng 1 2017

làm dài dòng lắm đó

29 tháng 1 2017

làm dài dòng ghê

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

10 tháng 5 2022

a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121