cho tam giác ABC có D thuộc AC ,AEvuông góc vsBD,CF vuông góc vs BD.so sánh AC vs EA+FC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e và f là chân đường vuông góc kẻ từ a đến c hay là kẻ từ a và c đấy
Xét trong tam giác vuông ABC ta có:
Góc ACB=300
=> ABC=180-90-30=600
Vì góc ACB<ABC(30>60)
=> AB<AC(tính chất cạnh và góc đối diện)
b/Xét tam giác ABE và tam giác DBE có:
BE chung
BAE=BDE=900
ABE=DBE(Phân giác BE của góc ABC)
=> Tam giác ABE= tam giác DBE(ch-gn)
c/ Ta có BE là đường phân giác góc ABC
=> ABE=DBE=60/2=300
=> DBE=ECD=300
=> Tam giác ECB cân tại E
Vì EC là cạnh huyền của tam giác EDC vuông tại D
Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE
=> BE>AB
=> EC>AB(đpcm)
Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{A}\) chung
Do đó:ΔABE=ΔACF
Suy ra: BE=CF
a) Cm: Tam giác BEC = Tam giác CDB (cạnh huyền - góc nhọn) => BD = CE
b) Từ a, => BE = CD => Tam giác OBE = Tam giác OCD ( góc nhọn - cạnh góc vuông)
c) O là trực tâm tam giác ABC => AO vuông góc BC. Mà ABC cân tại A => AO là phân giác góc BAC
cho mình nhé!
Các tia phân giác góc B, C cắt nhau tại I
\(\Rightarrow\)AI là phân giác góc A
\(\Rightarrow\)\(\widehat{DAI}=\widehat{EAI}\)
Xét 2 tam giác vuông \(\Delta DAI\)và \(\Delta EAI\)có:
\(AI:\)cạnh chung
\(\widehat{DAI}=\widehat{EAI}\)(cmt)
suy ra: \(\Delta DAI=\Delta EAI\)(ch_gn)
\(\Rightarrow\)\(AD=AE\)