Cho A=11.........11+11........11+66.............66+8
1998 C/S1 1000C/S1 999 C/S 6
Chứng Minh A Là Số Chính Phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
CMR số sau là số chính phương
A = 11...1(2n chữ số 1) + 11...1(n+1 chữ số 1) + 66...6(n chữ số 6) + 8
A=\(11...1\) (2n chữ số 1)+11...1(n+1 số 1) +66.6 (n số ^) +8
=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot11...1\) (n số 1) +8
=\(\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6\cdot\frac{10^n-1}{9}+8\)
=\(\frac{10^{2n}-1+10^n\cdot10-1+6\cdot10^n-6+72}{9}\)
=\(\frac{10^{2n}+16\cdot10^n+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{9}\)
=\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)
Ta thấy: 10n +8 có tổng các chữ số =9
=> 10n+8 chia hết cho 3 => 10n +8 thuộc Z
=>\(\left(\frac{\left(10^n+8\right)}{3}\right)^2\)thuộc Z
=> A là số chính phương
A = 11.....1 ( 2013 chữ số 1) × 100....05 ( 2012 chữ số 0) - 66....6 ( 2013 chữ số 6)
A = 11.....1 ( 2013 chữ số 1) × 100....05 ( 2012 chữ số 0) - 6 × 11....1 ( 2013 chữ số 6)
A = 11.....1 ( 2013 chữ số 1) × ( 100....05 ( 2012 chữ số 0) - 6)
A = 11.....1 ( 2013 chữ số 1) × 99....9 ( 2013 chữ số 9)
A = 11....1 ( 2013 chữ số 1) × 3 × 33....3 ( 2013 chữ số 3)
A = 33....3 ( 2013 chữ số 3) × 33....3 ( 2013 chữ số 3)
A = 33....32 ( 2013 chữ số 3)
vvvvvvvvvvvvv