K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

phương pháp quy nạp toán học
4^n +15n-1 (1)

với n =0 thì 40+15.0−1=0 chia hết 9
tương tự ta đc n=1 => (1)= 18 chia hết 9
............
giả sử (1) đúng với n =k
hay 4k+15k−1 chia hết 9
--- CM bài toán cũng đúng với n=k+1

xét 4k+1+15(k+1)−1

=4.4k+4.15k−4−3.15k+18

=4(4k+15k−1)−9(5k+2)

do 4k+15k−1 chia hết 9 và 9(5k+2) chia hết cho 9

=> 4(4k+15k−1)−9(5k+2) chia hết 9

=> cm đc với n=k+1

vậy (1) đúng với mọi số tự nhiên n.

phương pháp quy nạp toán học
4^n +15n-1 (1)

với n =0 thì 40+15.0−1=0 chia hết 9
tương tự ta đc n=1 => (1)= 18 chia hết 9
............
giả sử (1) đúng với n =k
hay 4k+15k−1 chia hết 9
--- CM bài toán cũng đúng với n=k+1

xét 4k+1+15(k+1)−1

=4.4k+4.15k−4−3.15k+18

=4(4k+15k−1)−9(5k+2)

do 4k+15k−1 chia hết 9 và 9(5k+2) chia hết cho 9

=> 4(4k+15k−1)−9(5k+2) chia hết 9

=> cm đc với n=k+1

vậy (1) đúng với mọi số tự nhiên n.

7 tháng 1 2016

Gọi cái cần chứng minh là (*)

+) Với n = 1 thì (*) = 4 + 15 - 1 = 18 chia hết cho 9

+) Giả sử (*) đúng với n = k => 4k + 15k - 1 chia hết cho 9 thì ta cần chứng minh (*) luôn đúng với k + 1 tức 4k + 1 + 15(k + 1) - 1 chia hết cho 9

Thật vậy:

4k + 1 + 15(k + 1) - 1

= 4.4k + 15k + 15 - 1

= 4.4k + 15k + 18 - 4 - 45k

= 4.(4k + 15k - 1) - 45k - 18

Vì 4.(4k + 15k - 1) chia hết cho 9; 45k chia hết cho 9 và 18 cũng chia hết cho 9

=> 4.(4k + 15k - 1) - 45k - 18 chia hết cho 9 

hay 4k + 1 + 15(k + 1) - 1 chia hết cho 9

=> Phương pháp quy nạp được chứng minh

Vậy 4n + 15n - 1 chia hết cho 9 với mọi n thuộc N*

7 tháng 1 2016

chứng minh mà ghi kết quả

NV
19 tháng 11 2019

Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)

Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)

Thật vậy:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)

\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)

Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)

\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)

14 tháng 11 2016

Bài 1:

a) n+4 chia hết cho n-13

=> n-13+17 chia hết cho n-13

=> 17 chia hết cho n-13

=> n-13 \(\in\) Ư(17) = {1;-1;17;-17}

=> n \(\in\) {14;12;30;-4}

Vì n \(\in\) N nên n \(\in\) {14;20;30}

b) n-5 chia hết cho n-11

=> n-11+6 chia hết cho n-11

=> 6 chia hết cho n-11

=> n-11 \(\in\) Ư(6) = {1;-1;2;-2;3;-3;6;-6}

=> n \(\in\) {12;10;13;9;14;8;17;5}

14 tháng 11 2016

Bài 2:

Để \(\overline{34x5}\) chia hết cho 9

=> 3+4+x+5 chia hết cho 9

=> 12+x chia hết cho 9

=> x = 7

1 tháng 8 2016
  • Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

  • Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

  • Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^

26 tháng 12 2015

chả có j mà ngồi cười như thật!

26 tháng 12 2015

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31