Giải phương trình
\(\frac{1}{x^2}+\frac{1}{\left(x+2\right)^2}=\frac{10}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{x^2\left(x+1\right)^2+x^2\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2\left[\left(x+1\right)^2-\left(x-1\right)^2\right]}{\left[\left(x-1\right)\left(x+1\right)\right]^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{x^2\left(x+1-x+1\right)\left(x+1+x-1\right)}{\left(x^2-1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2.2.2x}{x^4-2x^2+1}=\frac{10}{9}\)
\(\Leftrightarrow36x^3=10x^4-20x^2+10\Leftrightarrow18x^3=5x^4-10x^2+5\Leftrightarrow5x^4-18x^3-10x^2\)+5=0
đến đây tự giải tiếp
ĐK:\(x\ne1;x\ne-1\)
\(pt\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2}{9\left(x-1\right)^2\left(x+1\right)^2}=0\)
\(\Leftrightarrow9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Leftrightarrow9x^4+18x^3+9x^2+9x^4-18x^3+9x^2-10x^4+20x^2-10=0\)
\(\Leftrightarrow8x^4+38x^2-10=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=5\left(l\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)
\(\Rightarrow x=2\)
pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
ĐKXĐ: x\(x\ne\)1,-1
a) pt <=> \(\left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
<=> \(\frac{4x^4}{\left(x^2-1\right)^2}-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
Đặt: t=\(\frac{2x^2}{x^2-1}\)
Pt trở thành: \(t^2-t-\frac{10}{9}=0\)\(\Leftrightarrow9t^2-9t-10=0\)<=> \(\orbr{\begin{cases}t=-\frac{1}{3}\\t=\frac{5}{6}\end{cases}}\)
Nếu: \(\frac{2x^2}{x^2-1}=-\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{1}{7}}\\x=-\sqrt{\frac{1}{7}}\end{cases}\left(tm\right)}\)
Nếu: \(\frac{2x^2}{x^2-1}=\frac{5}{6}\)(vô nghiệm)
Vậy nghiệm là ...
http://vchat.vn/pictures/service/2017/02/iit1486637364.PNG
Giải phương trình: \(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)
Điều kiện:\(x\ne0\)
Đặt \(\frac{x}{3}-\frac{4}{x}=t\).Ta có:\(t^2=\left(\frac{x}{3}-\frac{4}{x}\right)^2=\frac{x^2}{9}-2.\frac{x}{3}.\frac{4}{x}+\frac{16}{x^2}=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\)
\(\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=t^2+\frac{8}{3}\).Thay vào pt ta có:\(t^2+\frac{8}{3}=\frac{10}{3}.t\)
\(\Leftrightarrow3t^2-10t+8=0\)\(\Leftrightarrow3t^2-4t-6t+8=0\)
\(\Leftrightarrow t\left(3t-4\right)-2\left(3t-4\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t-4\right)=0\Rightarrow\orbr{\begin{cases}t=2\\t=\frac{4}{3}\end{cases}}\)
Với \(t=2\) thì \(\frac{x^2-12}{3x}=2\Leftrightarrow x^2-12-6x=0\)\(\Rightarrow x^2-6x+9-21=0\)
\(\Leftrightarrow\left(x-3\right)^2=21\Rightarrow\orbr{\begin{cases}x-3=\sqrt{21}\\x-3=-\sqrt{21}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{21}+3\\x=3-\sqrt{21}\end{cases}}\)
Với \(t=\frac{4}{3}\) thì \(\frac{x^2-12}{3x}=\frac{4}{3}\Leftrightarrow x^2-4x-12=0\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
Tập nghiệm của pt S=\(\left\{\sqrt{21}+3;3-\sqrt{21};-2;6\right\}\)
\(\frac{1}{x^2}+\frac{1}{\left(x+2\right)^2}=\frac{10}{9}\)(ĐKXĐ: \(x\ne0;x\ne-2\) )
\(\Leftrightarrow\frac{\left(x+2\right)^2+x^2}{x^2\left(x+2\right)^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{2x^2+4x+4}{x^4+4x^3+4x^2}=\frac{10}{9}\Rightarrow9\left(2x^2+4x+4\right)=10\left(x^4+4x^3+4x^2\right)\)
\(\Leftrightarrow10x^4+40x^3+40x^2=18x^2+36x+36\)
\(\Leftrightarrow10x^4+40x^3+22x^2-36x-36=0\)
\(\Leftrightarrow10x^3\left(x-1\right)+50x^2\left(x-1\right)+72x\left(x-1\right)+36\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(10x^3+50x^2+72x+36\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[10x^2\left(x+3\right)+20x\left(x+3\right)+12\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(10x^2+20x+12\right)=0\)
Mà \(10x^2+20x+12=10\left(x+1\right)^2+2>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)(thỏa mãn ĐKXĐ)
Tập nghiệm của pt: \(S=\left\{1;-3\right\}\)