Cho tam giác MNP cân tại P. Gọi E và F lần lượt là trung điểm của MP và NP.
a/ Chứng minh tứ giác MNFE là hình thang cân.
b/ Giả sử MPN = 54 độ . Tính số đo các góc của hình thang cân MNFE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AE = FA ( gt)
=> ∆AEF cân tại A
=> AEF = \(\frac{180°\:-\:BAC}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°\:-\:BAC}{2}\)
=> ABC = AEF
Mà 2 góc này ở vị trí đồng vị
=> FE//BC
=> FEBC là hình thang
Mà ∆ABC cân tại A
=> ABC = ACB
=> FEBC là hình thang cân (dpcm)
b) Vì ∆ABC cân tại A
=> AB = AC
Mà AE = FA
=> EB = FC
Mà FEBC là hình thang cân
=> EC = FB ( tính chất)
Xét ∆ECB và ∆FBC ta có :
BC chung
EC = FB
ABC = ACB
=> ∆ECB = ∆FBC (c.g.c)
=> BEC = CFB ( tương ứng)
Xét ∆EIB và ∆FIC ta có :
EB = FC (cmt)
BEC = CFB (cmt)
EIB = FIC ( đối đỉnh)
=> ∆EIC = ∆FIC (g.c.g)
=> IB = IC ( tương ứng)
=> ∆IBC cân tại I
=> IBC = ICB
Vì M là trung điểm IB
N là trung điểm IC
=> MN là đường trung bình ∆IBC
=> MN //BC
=> MNCB là hình thang
Mà IBC = ICB (cmt)
=> MNCB là hình thang cân
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)
b) Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
a) Xét tam giác MNP:
+ B là trung điểm MN (gt).
+ C là trung điểm MP (gt).
→ BC là đường trung bình.
→ BC // NP (Tính chất đường trung bình).
Xét tứ giác NBCP: BC // NP (cmt).
→ Tứ giác NBCP là hình thang (dhnb).
b) Xét tứ giác MANE:
+ B là trung điểm của MN (gt).
+ B là trung điểm của ED (E là điểm đối xứng của A qua B).
→ Tứ giác MANE là hình bình hành (dhnb).
Mà \(\widehat{MAN}=90^o\) \(\left(MA\perp NP\right).\)
→ Tứ giác MANE là hình chữ nhật (dhnb).
a) Xét tam giác MNP:
+ B là trung điểm MN (gt).
+ C là trung điểm MP (gt).
\(\rightarrow\) BC là đường trung bình.
\(\rightarrow\) BC // NP (Tính chất đường trung bình).
Xét tứ giác NBCP: BC // NP (cmt).
\(\rightarrow\) Tứ giác NBCP là hình thang (dhnb).
b) Xét tứ giác MANE:
+ B là trung điểm của MN (gt).
+ B là trung điểm của ED (E là điểm đối xứng của A qua B).
\(\rightarrow\) Tứ giác MANE là hình bình hành (dhnb).
Mà \(\widehat{MAN}=90^o\left(MA\perp NA\right).\)
\(\rightarrow\) Tứ giác MANE là hình chữ nhật (dhnb).
c) Xét tam giác MNP:
+ C là trung điểm MP (gt).
+ D là trung điểm NP (gt).
\(\rightarrow\) CD là đường trung bình.
\(\rightarrow\) CD // MN (Tính chất đường trung bình).
\(\rightarrow\) \(\widehat{CDP}=\widehat{ANM}\) (Đồng vị).
Mà \(\widehat{ANM}=\widehat{BAN}\) (Tứ giác MANE là hình chữ nhật).
\(\rightarrow\) \(\widehat{CDP}=\widehat{BAN}.\)
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
a: Xét ΔPMN có
\(\dfrac{PE}{EM}=\dfrac{PF}{FN}\)
Do đó: EF//MN
Xét tứ giác MEFN có EF//MN
nên MEFN là hình thang
mà \(\widehat{M}=\widehat{N}\)
nên MEFN là hình thang cân