So sánh A=\(\frac{15^8+2}{15^8-1}\) và B =\(\frac{15^8}{15^8-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)
b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
_Học tốt_
a) 2515 và 810. 330
2515 = (52 ) 15 = 530
810. 330 = (23 )10. 330 = 230. 330 = 630
Vì 530< 630
nên 2515< 810. 330
b) \(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)
nên \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
a)\(25^{15}=5^{2^{15}}=5^{30}\)
\(8^{10}.3^{30}=2^{3^{10}}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
\(5^{30}< 6^{30}=>25^{15}< 8^{10}.3^{30}\)
b)\(\frac{4^{15}}{7^{30}}=\frac{2^{2^{15}}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{6^{30}}{14^{30}}=\left(\frac{6}{14}\right)^{30}=\left(\frac{3}{7}\right)^{30}\)
Vì hai số có mũ bằng 30 nên ta so sánh :\(\frac{2}{7}< \frac{3}{7}\)
=>\(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\).
Lời giải:
$\frac{-3}{8}.\frac{2}{15}+\frac{-3}{8}.\frac{13}{15}+1\frac{3}{8}$
$=\frac{-3}{8}(\frac{2}{15}+\frac{13}{15})+1+\frac{3}{8}$
$=\frac{-3}{8}.\frac{15}{15}+1+\frac{3}{8}=\frac{-3}{8}+1+\frac{3}{8}=1$
Vì (x - 2)2 \(\ge\) 0 => (x - 2)2 - 15 \(\ge\) 0 - 15 = -15
(x - 2) - 15 \(\ge-15\)
a) Ta so sanh (x-2)2-15 va -15
Hay: (x-2)2 -15+15 va -15+15
Hay: (x-2)2 va 0
Ta thay: (x-2)2 lon hon hoac bang 0 nen suy ra:
(x-2)2-15 se lon hon hoac bang 15
b) Ta so sanh: 8/3 - |x+1/2| va 3
Hay: 8/3 - 8/3 - |x+1/2| va 3-8/3
Hay: - | x+1/2| va 1/3
Ta thay: |x+1/2| lon hon hoac bang 0 => -|x+1/2| se be hon hoac bang 0
=> - | x+1/2| < 1/3
=> 8/3 - |x+1/2| < 3
rõ ràng ta chỉ cần so sánh giữa \(15^{30}+16^{12}+17^{50}-16^8\) và \(17^{30}+16^8+15^{50}-16^{12}\)
Áp dụng tính chất nếu a>b thì a-b>0 ta được:
\(15^{30}+16^{12}+17^{50}-16^8\)- \(\left(17^{30}+16^8+15^{50}-16^{12}\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(16^{12}+16^{12}\right)+\left(15^{30}-15^{50}\right)-\left(16^8+16^8\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)+2\left(16^{12}-16^8\right)\)
Vì 17^50 - 17^30 > l 15^30 - 15^50 l
nên \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)>0\)
=>\(15^{30}+16^{12}+17^{50}-16^8\)> \(17^{30}+16^8+15^{50}-16^{12}\)
=> Phân số thứ nhất > 1 và p/s thứ hai < 1
Lúc này bạn tự so sánh nha
Ta có : \(\frac{4^{15}}{7^{10}}=\frac{\left(2^2\right)^{15}}{7^{10}}=\frac{2^{30}}{7^{10}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.1^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}}=\frac{2^{30}.3^{30}}{7^{30}}=\frac{\left(2.3\right)^{30}}{7^{30}}=\frac{6^{30}}{7^{30}}\)
Mà : \(\frac{2^{30}}{7^{10}}=\frac{\left(2^3\right)^{10}}{7^{10}}=\frac{8^{10}}{7^{10}}\)
\(\frac{6^{30}}{7^{30}}=\frac{\left(6^3\right)^{10}}{\left(7^3\right)^{10}}=\frac{216^{10}}{343^{10}}\)
Vì : \(\frac{8}{7}>\frac{216}{343}\Rightarrow\frac{8^{10}}{7^{10}}>\frac{216^{10}}{343^{10}}\)
\(\Rightarrow\frac{4^{15}}{7^{10}}>\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
giúp mình vs
cho n là số tự nhiên
a, (n+ 10) (n+ 15) chia hết cho 2
b, n (n+ 1) (n+2) chia hết cho 2 và 3
c, n (n+ 1) (2n+1) chia hết cho 2 và 3
\(A=\frac{15^8-1+3}{15^8-1}=1+\frac{3}{15^8-1}\)
\(B=\frac{15^8-3+3}{15^8-3}=1+\frac{3}{15^8-3}\)
Ta có: \(15^8-3< 15^8-1\)
=> B>A