K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

đề sai. 

CHỈ CÓ THỂ AH+AB < AB+AC

6 tháng 8 2020

c2

XÉT \(BC+AH>AB+AC\)

BÌNH PHƯƠNG CẢ VẾ TA CÓ

\(\Rightarrow\left(BC+AH\right)^2>\left(AB+AC\right)^2\)

\(\Rightarrow BC^2+2BC.AH+AH^2>AB^2+2AB.AC+AC^2\)

MÀ \(AB^2+AC^2=BC^2\left(PYTAGO\right)\)

\(2S_{ABC}=AH.BC=AB.AC\)

\(\Rightarrow AH^2>0\)(ĐÚNG) 

=> đpcm

6 tháng 8 2020

vì H là hình chiếu của điểm A trên đường thẳng BC 

=> AH LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)VUÔNG TẠI 

vẽ thêm AE LÀ PHÂN GIÁC CỦA \(\widehat{HAC}\),KẺ \(EF\perp AC\)

XÉT HAI TAM GIÁC VUÔNG  \(\Delta AHE\)VÀ \(\Delta AFE\)CÓ AE LÀ CẠNH CHUNG ; \(\widehat{HAE}=\widehat{FAE}\)(CÁCH VẼ)

\(\Rightarrow\Delta AHE=\Delta AFE\left(ch-gn\right)\)

\(\Rightarrow AH=AF\)

MÀ DỄ THẤY \(FC< EC\)( QUAN HỆ ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN )

XÉT \(\Delta EAH\)VUÔNG TẠI H

TA CÓ \(\widehat{BEA}=90^o-\widehat{EAH}\)

          \(\widehat{BAE}=90^o-\widehat{EAF}\)

MÀ \(\widehat{HAE}=\widehat{FAE}\)( CÁCH VẼ )

\(\Rightarrow\widehat{BEA}=\widehat{BAE}\)

\(\Rightarrow\Delta BAE\)CÂN TẠI B 

=> AB = AE

TỪ CÁC CHỨNG MINH TRÊN TA CÓ 

\(\Leftrightarrow AB+AF+FC< BE+AH+EC\)

\(\Leftrightarrow BC+AH>AB+AC\)

\(\Rightarrow AH+BC>AB+AC\left(đpcm\right)\)

2 tháng 12 2015

I là hình chiếu của H trên AB => HI vuông góc vs AB => góc AIH = 900
tương tự ta có: K là hình chiếu của H trên AC => HK vuông góc vs AC => góc AKH = 900
Tứ giác AIHK  là hình chữ nhật vì có BAC=ADH=HKA=900
=>IO=OA(cho O là giao điểm giữa 2 đường chéo AH và IK)
=>góc IAO=góc AIO(1)
Có AM là đường trung tuyến ứng vs cạnh huyền(M là trung điểm BC) của tam giác vuông ABC
 => tam giác ACM cân tại M => góc MAC = góc MCA  (2)
Mặt khác góc MCA= góc IAO vì cùng phụ vs AH.(3)
Từ (1),(2) và (3) => góc IAO= góc MAC= góc MCA
Tam giác AIK vuông tại A nên góc AKI+ góc AIK=900  =>góc MAK + góc IKA =900
Gọi giao điểm của AM vs IK là F thì từ tam giác AKF ta có  góc AFK =900 hay AM vuông góc vs IK

tự vẽ hình nhé ^,^
 

7 tháng 4 2023

loading...  

a:Xet ΔABC vuông tại A và ΔIBH vuông tại I có

góc B chung

=>ΔABC đồng dạng với ΔIBH

b: \(BA=\sqrt{5^2-3^2}=4\left(cm\right)\)

HB=4-1=3cm

=>HM=MB=1,5cm

ΔABC đồng dạngvơi ΔIBH

=>AB/IB=BC/BH=AC/IH

=>4/IB=5/3=3/IH

=>IB=4:5/3=12/5cm và IH=3:5/3=9/5cm