Tìm GTNN hoặc GTLN:
a, A= /x+2015/+7
b, B= 15-/x-201/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)
\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)
\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)
\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\)
B max ko tồn tại
a) Ta có: \(A=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
b) Ta có: \(B=2x^2-8x+15\)
\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu '=' xảy ra khi x=2
a. `A=x^2-5x+7`
`=x^2-2.x. 5/2 + (5/2)^2 +3/4`
`=(x-5/2)^2 + 3/4`
`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`
b) `B=2x^2-8x+15`
`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`
`=(\sqrt2x-2\sqrt2)^2+7`
`=> B_(min)=7 <=> x=2`.
Ta có : \(\left|x+2\right|+5\ge5\forall x\)
Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)
<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)
Vậy Amax = 2 khi x = -2
a) |x + 2015| > 0
\(\Rightarrow\) |x + 2015| + 7 > 7
\(\Rightarrow\) min A = 7 khi x = - 2015
b) |x - 201| > 0
\(\Rightarrow\) - |x - 201| < 0
\(\Rightarrow\) 15 - |x - 201| < 15
\(\Rightarrow\) max B = 15 khi x = 201