K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

A B C O K P Q E M N

a) Vì AB là tiếp tuyến (O)

=> AB⊥OB

=> \(\widehat{ABO}\)\(=90^0\)

Vì AC là tiếp tuyến (O)

=> AC⊥OC

=>\(\widehat{ACO}\) \(=90^0\)

Ta có: \(\widehat{ABO}+\widehat{ACO}\) \(=90^0+90^0=180^0\)

=> Tứ giác ABOC nội tiếp đường tròn. (theo dấu hiệu nhận biết tứ giác nội tiếp)

b) Vì tiếp tuyến AB cắt tiếp tuyến AC tại A

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\BO=CO\end{matrix}\right.\)

\(\Rightarrow\) AO là đường trung trực ứng BC

\(\Rightarrow\) AO⊥BC ( mà E∈BC)

\(\Rightarrow\) BE⊥AO (đpcm)

Xét ΔABO có: \(\widehat{ABO}\) \(=90^0\) (cmtrn)

BE⊥AO (cmtrn)

\(\Rightarrow\) Áp dụng hệ thức lượng trong tam giác vuông.

\(\Rightarrow\) \(AO\cdot OE=OB^2\) (mà OB=R)

\(\Rightarrow OA\cdot OE=R^2\) (đpcm)

c) Vì tiếp tuyến BP cắt tiếp tuyến PK tại P

\(\Rightarrow PB=PK\)

Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q

\(\Rightarrow KQ=QC\)

Ta có: \(P_{APQ}=AP+PQ+AQ\) \(=AP+PK+KQ+AQ\)

\(\Leftrightarrow P_{APQ}=\left(AP+PB\right)+\left(QC+AQ\right)\)

\(\Leftrightarrow P_{APQ}=AB+AC\)

\(AB+AC\) không thay đổi khi K chuyển động trên cung nhỏ BC

\(\Rightarrow\) Chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC (đpcm).

d) Tự CM: \(\Delta MOP\sim\Delta NQO\)

\(\Rightarrow\frac{MP}{NO}=\frac{MO}{NQ}\) \(\Leftrightarrow MP\cdot NQ=MO\cdot NO=\frac{MN}{2}\cdot\frac{MN}{2}\)

\(\Leftrightarrow MP\cdot NQ=\frac{MN^2}{4}\)

\(\Leftrightarrow MN^2=4\cdot\left(MP\cdot NQ\right)\)

\(\Leftrightarrow MN=2\cdot\sqrt{MN\cdot NQ}\)

Áp dụng bđt Côshi ta có:

\(2\cdot\sqrt{MP\cdot NQ}\le MP+NQ\)

\(\Leftrightarrow MN\le MP+NQ\) (đpcm).

5 tháng 3 2020

c) Xét ΔMAN có : \(\left\{{}\begin{matrix}AO\perp MN\\MO=NO=R\end{matrix}\right.\)

\(\Rightarrow\) Tam giác MAN cân tại A

\(\Rightarrow\) \(\widehat{M}=\widehat{N}\)

\(\Rightarrow\) \(\widehat{MAN}+2\widehat{M}\)\(=180^0\) (!)

Vì tiếp tuyến OB cắt tiếp tuyến OK tại P

\(\Rightarrow\) OP là phân giác \(\widehat{BOK}\)

\(\Rightarrow\) \(\widehat{BOP}=\widehat{POK}\)

Vì tiếp tuyến OK cắt tiếp tuyến OC tại Q

\(\Rightarrow\) \(\widehat{KOC}=\widehat{QOC}\)

Ta có: \(\widehat{BOP}+\widehat{POK}+\widehat{KOQ}+\widehat{QOC}=\widehat{BOC}\)

\(\Leftrightarrow\)\(2\widehat{POK}+2\widehat{KOQ}=\widehat{BOC}\)

\(\Leftrightarrow\) \(2\widehat{POQ}=\widehat{BOC}\)

Vì tứ giác ABOC nội tiếp đường tròn (cmtrn)

\(\Rightarrow\) \(\widehat{BAC}+\widehat{BOC}=\) \(180^0\)

\(\Leftrightarrow\) \(\widehat{MAN}+2\widehat{POC}\) \(=180^0\) (!!)

Từ (!)(!!) \(\Rightarrow\) \(\widehat{M}=\widehat{POC}\)

\(\widehat{PON}\) là góc ngoài của ΔQOM

\(\Rightarrow\) \(\widehat{MPO}+\widehat{M}=\widehat{QON}\)

\(\Leftrightarrow\) \(\widehat{MPO}+\widehat{M}=\widehat{NOQ}+\widehat{POQ}\) (mà \(\widehat{M}=\widehat{POQ}\))

\(\Rightarrow\) \(\widehat{MPO}=\widehat{QON}\)

Xét ΔMOP∼ΔNQO vì :

\(\widehat{M}=\widehat{N}\) (cmtrn)

\(\widehat{MPO}=\widehat{QON}\) (cmtrn)

23 tháng 2 2018

a) A,M, B.                      

b) N, E.               

c) Q, P.

d) MA, MB.                  

e) AB

11 tháng 8 2017

a) A, B, C, D                 

b) G, H                

c) I, F

d) AB, CD

e) BE

10 tháng 4 2018

a) A, B, C, D         

b) G, H                

c) I, F

d) AB, CD

e) BE.

30 tháng 10 2018

a) A,M, B.

b) N, E.

c) Q, P.

d) MA, MB.

e) AB

30 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đường tròn (O’) tiếp xúc trong với đường tròn (O).

28 tháng 6 2017

a) M, BN, C, D              

b) B, K                

c) A, I, G

d)  CN

e) MN

17 tháng 9 2019

a) M, BN, C, D

b) B, K                

c) A, I, G

d)  CN

e) MN.