Chinh phục Đấu trường Tri thức OLM hoàn toàn mới, xem ngay!
🎯Bài kiểm tra ĐGNL đầu hè miễn phí cho học sinh
Hướng dẫn xuất báo cáo, thống kê dành cho nhà trường. Xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR với \(\forall n\ge1\)ta có
\(5^{2n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}⋮38\)
CMR với V \(n\ge1\) ta có:
52n-1.22n-1.5n+1+3n+1.22n-1 chia hết cho 38
Câu tương tự
cmr:
\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{2n-1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(\forall n\ge1\right)\)
CMR với mọi n > hoặc băng 1 ta có
52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng \(2^{n+1}.5^{2n-1}+2^{2n-1}.3^{n+1}⋮38\left(n\in N,n\ge1\right)\)
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Cmr: \(5^{2n-1}.2^{n+1}+2^{2n-1}.3^{n+1}⋮38\) ( n ∈ N* )
Chứng minh rằng: \(5^{2n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}=2^n\left(5^{2n-1}.10+9.6^{n-1}\right)\)
Với \(n\ge1\)
Chứng minh rằng \(5^{n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}=2^n\left(5^{2n-1}.10+9.6^{n-1}\right)\)
CMR voi moi so tu nhien n thi
A=5^2n+1*2^n+2+3^n+2*2^2n+1 chia het cho 38