Cho tam giác ABC. A > 90 độ. M thuộc AB, N thuộc AC
cmr BC > MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A N B C M
Vì tam giác ABC cân tại A suy ra AB=AC= 15 cm
Mà AM+MC=AC nên 9 + MC= 15
suy ra MC=6cm
Vì BM là phân giác của góc B nên
\(\frac{AM}{MC}=\frac{AB}{BC}\Leftrightarrow\frac{9}{6}=\frac{15}{BC}\Rightarrow BC=10cm\)
b) Vì \(\widehat{ABM}=\widehat{MBC}=\frac{\widehat{ABC}}{2}\);
\(\widehat{ACN}=\widehat{NCB}=\frac{\widehat{ACB}}{2}\)
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
nên \(\widehat{ABM}=\widehat{MBC}=\)\(\widehat{ACN}=\widehat{NCB}\)
Xét tam giác ABM và tam giác ACN
có AB=AC(GT); góc A chung; \(\widehat{ABM}=\widehat{ACN}\)
suy ra tam giác ABM = tam giác ACN ( g.c.g)
suy ra AN=AM suy ra tam giác AMN cân tại A suy ra \(\widehat{ANM}=\widehat{AMN}\)
Xét tam giác AMN có \(\widehat{ANM}+\widehat{AMN}+\widehat{A}=180^0\Rightarrow\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\)(1)
Vì tam giác ABC cân tại A suy ra \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (!) và (2) suy ra \(\widehat{ANM}\)= \(\widehat{ABC}\)
Mà góc ANM đồng vị với góc ABC
suy ra MN//BC
c) Vì MN//BC ta có
\(\frac{MN}{BC}=\frac{AM}{AC}\Rightarrow\frac{MN}{10}=\frac{9}{15}\Rightarrow MN=6cm\)
CHÚC EM HỌC TỐT
Tam giác ABC cân, mà C > 90 độ => Tam giác ABC cân tại C (nếu cân tại A hoặc B thì không tồn tại ABC, vì tổng 2 góc lớn hơn 180 độ là vô lí).
a. Vì ABC cân tại C, Cx p/giác góc C => Cx cũng là trung trực của ABC.
(Tự vẽ hình).
Xét 2 tam giác AMC & BMC có:
AC = BC (vì ABC cân tại C)
góc ACM = góc BCM (ABC cân tại C)
MC: cạnh chung
Do đó tam giác AMC = tam giác BMC (c.g.c)