Cho đa thức \(M=2x^3-3x^2+1-x^3+5x^2-2\)
a) Thu gọn đa thức M
b) Tìm bậc của đa thức M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
a, \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
b, \(M\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2\)
c, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
a: \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
b: Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
c: Đặt M(x)+2=0
\(\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`=-5x^3+4x-5`
`M(x)=P(x)+Q(x)`
`=5x^3-3x+7-5x^3+4x-5`
`=x+2`
`N(x)=P(x)-Q(x)`
`=5x^3-3x+7+5x^3-4x+5`
`=10x^3-7x+12`
b)Đặt `M(x)=0`
`<=>x+2=0`
`<=>x=-2`
Vậy M(x) có nghiệm `x=-2`
1k like đâu
a) \(P\left(x\right)=5x^3-3x+7-x\\ =5x^3+\left(-3x-x\right)+7\\ =5x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\\ =-5x^3+\left(2x+2x\right)+\left(-3-2\right)+x^2\\ =-5x^3+4x-5+x^2\)
\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\\ =5x^3-4x+7+\left(-5x^3\right)+4x-5-x^2\\ =\left(5x^3-5x^3\right)+\left(-4x+4x\right)+\left(7-5\right)-x^2\\ =2-x^2\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)\\ =5x^3-4x+7-\left(-5x^3+4x-5+x^2\right)\\ =5x^3-4x+7+5x^3-4x+5-x^2\\ =\left(5x^3+5x^3\right)+\left(-4x-4x\right)+\left(7+5\right)+x^{^2}\\ =10x^3-8x+12+x^2\)
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
a: \(P\left(x\right)=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b: \(M\left(x\right)=-x^2+2\)
\(N\left(x\right)=10x^3+x^2-8x+12\)
c: Đặt M(x)=0
=>2-x2=0
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
`a)P(x)=5x^3-3x+7-x`
`=5x^3-3x-x+7`
`=5x^3-4x+7`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`=-5x^3-x^2+2x+2x-3-2`
`=-5^3-x^2+4x-5`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`=5x^3-5x^3-x^2-4x+4x+7-5`
`=-x^2+2`
`N(x)=5x^3-4x+7+5x^3+x^2-4x+5`
`=5x^3+5x^3+x^2-4x-4x+7+5`
`=10x^3+x^2-8x+12`
Đặt `M(x)=0`
`<=>-x^2+2=0`
`<=>2=x^2`
`<=>x=+-sqrt2`
a: A(x)=3x^5+x^4-x^2+x
B(x)=3x^5-x^4+x^2+x-2
b: M(x)=B(x)-A(x)
=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x
=-2x^4+2x^2+2x-2
a) P(x)=5x3 - 3x - x + 7
Q(x)=-5x3- x2 + 2x + 2x -3 - 2
b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x2 + 2x + 2x - 3 - 2 )
=5x3 - 3x - x + 7 - 5x3 - x2 + 2x + 2x - 3 - 2
=(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)
=> M = -x2+2
P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)
= 5x3-3x-x+7+5x3-x2+2x+2x-3-2
=(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)
=> N =10x3 -x2 +2
c)-x2+2=0
-x2=0+2
-x2=2
=>-x2=\(-\sqrt{2}\)
a,M=\(^{x3}\)+2\(^{x2}\)-1
b, Bậc của đa thức là 3