Chứng minh B=(n+1).(n+2).....(2n-1).2n / 2^n có giá trị nguyên
Lại nhờ các bạn lần nữa ạ,mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
Vậy ta được điều phải chứng minh
Để P có giá trị nguyên thì :
2n - 3 chia hết cho n + 1
=> (2n - 3) - 2.(n + 1) chia hết cho (n + 1)
=> 2n - 3 - 2n - 2 chia hết cho n + 1
=> - 5 chia hết cho n + 1
=> n + 1 là Ư(5)
Mà Ư(5) = {- 5; - 1; 1; 5}
=> n + 1 thuộc {- 5; -1; 1; 5}
=> n thuộc {- 6; -2; 0; 4}
(Nhưng thật sự là bài lớp 6 mà, mình mới học lớp 6 thôi, ko lừa đâu)
a) Đặt \(A=\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=\frac{n-3}{n-3}-\frac{2}{n-3}=1-\frac{2}{n-3}\)
Để A là số nguyên
=> 2/n-3 là số nguyên
=> 2 chia hết cho n - 3
=> n - 3 thuộc Ư(2)={1;-1;2;-2}
...
rùi bn tự thay giá trị của n -3 vào để tìm n nhé!
b) Đặt \(B=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2.\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)
Để B là số nguyên
=> 1/n+1 là số nguyên
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = { 1;-1}
...
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm