tìm 2 số A và B biết : A - B = 32 và A/B = 3/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
1. Áp dụng TCDTSBN:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a=12\\b=20\end{matrix}\right.\)
1. Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)
\(\dfrac{a}{3}=4\Rightarrow a=12\\ \dfrac{b}{5}=4\Rightarrow b=20\)
2. gọi độ dài 3 cạnh tam giác lần lượt là a,b,c
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{9}\\a+b+c=630\left(m\right)\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{9}=\dfrac{a+b+c}{5+7+9}=\dfrac{630}{21}=30\left(m\right)\)
\(\dfrac{a}{5}=30\Rightarrow a=150\left(m\right)\\ \dfrac{b}{7}=30\Rightarrow b=210\left(m\right)\\ \dfrac{c}{9}=30\Rightarrow c=270\left(m\right)\)
c hơn a số phần là
10 - 2 = 8 [phần]
suy ra 8 phần = 32
a là
32:8 nhân 2 =8
b là :
32:8 nhân 9 =36
c là
32 : 8 nhân 10 = 40
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Số a là:
32:(5-3)x3=48
số b là:
32:(5-3)x5=80