C= (1-1/1+2)(1-1/1+2+3)(1-1/1+2+3+4).....(1-1/1+2+3+....+2016)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\left(3\frac{1}{2}-x\right).1\frac{1}{4}=\frac{15}{6}\)
\(\left(\frac{7}{2}-x\right).\frac{5}{4}=\frac{15}{6}\)
\(\frac{7}{2}-x=\frac{15}{6}:\frac{5}{4}\)
\(\frac{7}{2}-x=2\)
\(x=\frac{7}{2}-2\)
\(\Rightarrow x=\frac{3}{2}\)
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
Bài làm:
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)
<=> \(2B=1-\frac{1}{3^{2017}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)
=> \(B< \frac{1}{2}\)
\(C=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+...+2016}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{\dfrac{\left(2016+1\right).2016}{2}}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{2033136}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}...\dfrac{2033135}{2033136}\)
\(=\dfrac{4}{6}.\dfrac{10}{12}...\dfrac{4066270}{4066272}\)
\(=\left(\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}\right).\left(\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{2018}{2017}\right)\)
\(=\dfrac{1}{2016}.\dfrac{2018}{3}=\dfrac{1009}{3024}\)
cảm ơn cậu