chứng tỏ :
(a-b)-(a+b)+(a-b)=(2a-3b)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
\(\left(a-b\right)-\left(a+b\right)+\left(2a-b\right)-\left(2a-3b\right)=0\)
biến đổi vế trái ta dược
=\(a-b-a-b+2a-b-2a+3b\)
\(=\left(a-a+2a-2a\right)+\left(-b-b-b+3b\right)\)
\(=-3b+3b\)
\(=0=vp\)
vậy đẳng thức được chứng minh
( a-b)-(a+b)+(2a-b)-(2a-3b)=0
<=> a-b-a-b+2a-b-2a+3b = 0
<=> 0=0
=> ĐPCM
P/s tham khảo nha
a) Ta có: a < b
⇒ 2a < 2b
⇒ 2a - 3 < 2b - 3 (cộng vào cả hai vế với -3)
b) Ta có: a < b
⇒ 3a < 3b
⇒ 3a - 1 < 3b + 1 (cộng vào cả hai vế với 1)
Giải
Ta có : \(\left(a-b\right)-\left(a+b\right)+\left(a-b\right)\)
\(=a-b-a-b+a-b\)( bỏ dấu ngoặc )
\(=\left(a-a+a\right)-\left(b+b+b\right)\)
\(=a-3b\)
Mà \(a-3b\ne2a-3b\)
\(\Rightarrow\left(a-b\right)-\left(a+b\right)+\left(a-b\right)\ne2a-3b\ne0\)