K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

Dvddfdfdc

22 tháng 4 2020

Ccd

AH
Akai Haruma
Giáo viên
29 tháng 12 2016

a)\(\int \sin ^2\left (\frac{x}{2}\right)dx=\int \frac{1-\cos x }{2}dx=\frac{x}{2}-\frac{\sin x}{2}+c\)

b)\(\int \cos ^2 \left (\frac{x}{2}\right)dx=\int \frac{1+\cos x}{2}dx=\frac{x}{2}+\frac{\sin x}{2}+c\)

c) \(\int \frac{(2x+1)dx}{x^2+x+5}=\int \frac{d(x^2+x+5)}{x^2+x+5}=ln(x^2+x+5)+c\)

d)\(\int (2\tan x+ \cot x)^2dx=4\int \tan ^2 x+\int \cot^2 x+4\int dx=4\int \frac{1-\cos^2 x}{\cos^2 x}dx+\int \frac{1-\sin^2 x}{\sin^2 x}dx+4\int dx \)\( =4\int d(\tan x)-\int d(\cot x)-\int dx=4\tan x-\cot x-x+c\)

30 tháng 12 2016

c.ơn bạn nhé Akai Haruma ^^

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....

 

3 tháng 3 2016

Đối với cả ba nguyên hàm đã cho, ta sẽ áp dụng liên tiếp hai làn lấy nguyên hàm từng phần và trong hai lần việc chọn hàm \(u=u\left(x\right)\) là tùy ý ( còn \(dv\) là phần còn lại của biểu thức dưới dấu nguyên hàm. Sau phép lấy nguyên hàm từng phần kép đó ta sẽ thu được một phương trình bậc nhất với ẩn là nguyên hàm cần tìm

a) Đặt \(u=e^{2x}\) ,\(dv=\sin3xdx\)

Từ đó \(du=2e^{2x}dx\)   , \(v=\int\sin3xdx=-\frac{1}{3}\cos3xdx\) Do đó : 

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}\int e^{2x}\cos3xdx\)

\(=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}.I'_1\)\(I'_1=\int e^{2x}\cos3xdx\)

Ta áp dụng công thức lấy nguyên hàm từng phần

Đặt \(u=e^{2x}\)  ; \(dv=\cos3xdx\)   Khi đó \(du=2^{2x}dx\)\(v=\frac{1}{3}\sin2x\)

Do đó \(I'_1=\frac{1}{3}e^{2x}\sin3x-\frac{2}{3}\int e^{2x}\sin3xdx\) Như vậy :

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}e^{2x}\sin3x-\frac{4}{9}\int e^{2x}\sin3xdx\)

\(I_1=\int e^{2x}\sin3xdx\)

Tức là \(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}\sin3x-\frac{4}{9}I_1\)

Ta có \(I_1=\frac{3}{13}e^{2x}\left(\frac{2}{3}\sin3x-\cos3x\right)+C\)

3 tháng 3 2016

b) Đặt \(u=e^{-x}\) ; \(dv=\cos\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\cos\frac{x}{2}dx=2\int\cos\frac{x}{2}d\left(\frac{x}{2}\right)=2\sin\frac{x}{2}\)

Do đó :

\(I_2=2e^{-x}\sin\frac{x}{2}+2\int e^{-x}\sin\frac{x}{2}dx\) (b)

\(\int e^{-x}\sin\frac{x}{2}dx=I'_2\)

Ta cần tính \(I'_2\)  Đặt \(u=e^{-x}\)   ; \(dv=\sin\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\sin\frac{x}{2}dx=-2\cos\frac{x}{2}\)

Do đó :

\(I'_2=-2e^{-x}\cos\frac{x}{2}-2\int e^{-x}\cos\frac{x}{2}dx\)

    \(=-2e^{-x}\cos\frac{x}{2}-2I_2\)

Thế \(I'_2\)   vào (b) ta thu được phương trình bậc nhất với ẩn là \(I_2\)

\(I_2=2e^{-x}\sin\frac{x}{2}+2\left[-2e^{-x}\cos\frac{x}{2}-2I_2\right]\)

hay là

\(5I_2=2e^{-x}\sin\frac{x}{2}-4e^{-x}\cos\frac{x}{2}\) \(\Rightarrow\) \(I_2=\frac{2}{5}e^{-x}\left(\sin\frac{x}{2}-2\cos\frac{x}{2}\right)+C\)

NV
26 tháng 8 2020

8.

\(I=\int sinx.cos2xdx=\int\left(2cos^2x-1\right)sinxdx\)

\(=\int\left(1-2cos^2x\right)d\left(cosx\right)=cosx-\frac{2}{3}cos^3x+C\)

9.

\(I=\int\frac{sin2x}{1+cos^2x}dx=-\int\frac{2\left(-sinx\right).cosx}{1+cos^2x}dx=-\int\frac{d\left(cos^2x\right)}{1+cos^2x}\)

\(=-ln\left|1+cos^2x\right|+C\)

NV
26 tháng 8 2020

6.

\(I=\int cos^3xdx=\int\left(1-sin^2x\right)cosxdx\)

\(=\int\left(1-sin^2x\right)d\left(sinx\right)=sinx-\frac{1}{3}sin^3x+C\)

7.

\(I=\int sin^2x.cos^3xdx=\int sin^2x\left(1-sin^2x\right)cosxdx\)

\(=\int\left(sin^2x-sin^4x\right)d\left(sinx\right)=\frac{1}{3}sin^3x-\frac{1}{5}sin^5x+C\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Ta có:

\(A=\int \frac{x\sin x+\cos x}{x^2-\cos ^2x}dx=\int \frac{(\cos x-x)+x(\sin x+1)}{x^2-\cos ^2x}dx\)

\(=-\int \frac{dx}{\cos x+x}+\int \frac{x(\sin x+1)}{x^2-\cos ^2x}dx=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\left(\frac{1}{x-\cos x}+\frac{1}{x+\cos x}\right)dx\)

\(=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}+\int \frac{dx}{x+\cos x}\)

\(=\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}\)

\(=\frac{1}{2}\int \frac{d(x-\cos x)}{x-\cos x}+\frac{1}{2}\int \frac{-d(x+\cos x)}{x+\cos x}\)

\(=\frac{1}{2}\ln |x-\cos x|-\frac{1}{2}\ln |x+\cos x|+c\)

Xét biểu thức $B$

\(B=\int \frac{\ln x-1}{x^2-\ln ^2x}dx=\int \frac{(\ln x-x)+(x-1)}{x^2-\ln ^2x}dx\)

\(=-\int \frac{dx}{x+\ln x}+\int \frac{x-1}{x^2-\ln ^2x}dx=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{(x-1)}{x}\left(\frac{1}{x-\ln x}+\frac{1}{x+\ln x}\right)dx\)

\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx+\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{x-1}{x}dx\)

\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx+\int \frac{dx}{x+\ln x}\)

\(=\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx\)

\(=\frac{1}{2}\int \frac{d(x-\ln x)}{x-\ln x}-\frac{1}{2}\int \frac{d(x+\ln x)}{x+\ln x}\)

\(=\frac{1}{2}\ln |x-\ln x|-\frac{1}{2}\ln |x+\ln x|+c\)


18 tháng 2 2018

ngôn ngữ quái vật @@

AH
Akai Haruma
Giáo viên
15 tháng 12 2016

Giải như sau:

Do \(\cos^2x+\sin^2x=1,\left(\tan x\right)'=\frac{1}{\cos^2x},\left(\cot x\right)'=-\frac{1}{\sin^2x}\) nên ta có

\(\int\frac{dx}{\cos^2x.sin^2x}=\int\left(\frac{1}{\cos^2x}+\frac{1}{\sin^2x}\right)dx=\int d\left(\tan x\right)-\int d\left(\cot x\right)=\tan x-\cot x+c\)

15 tháng 12 2016

cảm ơn bạn nhé :))