đề : Cho số tự nhiên có 2 chữ số biết tổng các chữ số bằng 9. Khi đổi chỗ các chữ số cho nhau ta được số mới lớn hơn số cũ là 9 đơn vị . Tìm số đã cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ba-ab=63\\ b\times10+a-a\times10+b=63\\ a\times9-b\times9=63\\ a-b=7\)
Gọi số cần tìm là ab=10a+b. Theo bài ra ta có: a+b=9 (1)
Khi đổi vị trí 2 số, được số mới là ba=10b+a
=> 10b+a=10a+b+63 => 9b=9a+63 => b=a+7
Thay vào (1), ta được: a+a+7=9 => 2a=2 => a=1; b=1+7=8
Số cần tìm là: 18
Gọi số lúc đầu là ab, ta có:
ba-ab=63..
==>10b+a-(10a+b)=63.
=>10b-b+a-10a=63.
=>9b-9a=63.
=>9(b-a)=63
=>b-a=7.
Mà a+b=9.
=>a=1;b=8.
Vậy số cần tìm là 18
1/
Số cần tìm \(\overline{ab7}\) theo đề bài
\(\overline{7ab}=2.\overline{ab7}+21\)
\(\Rightarrow700+\overline{ab}=20.\overline{ab}+14+21\)
\(\Leftrightarrow19.\overline{ab}=665\Rightarrow\overline{ab}=665:19=35\)
Số cần tìm là 357
2/
Gọi số cần tìm là \(\overline{ab}\) theo đề bài
\(\overline{ba}-\overline{ab}=63\)
\(10.b+a-10.a-b=63\)
\(9.\left(b-a\right)=63\Rightarrow b-a=7\)
\(a=\left(9-7\right):2=1\)
\(\Rightarrow b=9-a=9-1=8\)
Số cần tìm là 18
Gọi chữ số hàng chục của số đã cho là x
Gọi chữ số hàng đơn vị của số đã cho là y
ĐK: x ≤ 9 ; x ∈ \(N^*\)
y ≤ 9 ; y ∈ \(N\)
Vì tổng các chữ số của nó bằng 13 nên ta có pt: x + y = 13 (1)
Số đã cho là: \(\overline{xy}=10x+y\)
Số mới là: \(\overline{yx}=10y+x\)
Vì số mới lớn hơn số đã cho 27 đơn vị nên ta có pt:
\(\left(10y+x\right)-\left(10x+y\right)=27\)
\(\Leftrightarrow10y+x-10x-y=27\)
\(\Leftrightarrow9y-9x=27\)
\(\Leftrightarrow3y-3x=9\)
\(\Leftrightarrow y-x=3\)
\(\Leftrightarrow-x+y=3\) (2)
Từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=13\\-x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=8\end{matrix}\right.\left(TM\right)\)
Vậy số đã cho là 58.
Bài làm:
- Gọi x là chữ số hang chục của số cần tìm
y là chữ số hàng đơn vị của số cần tìm
(điều kiện: 0 < x ≤ 9; 0 ≤ y ≤ 9; x, y ∈ N)
- Vì tổng các chữ số bằng 9 nên ta có phương trình:
x + y = 9 (1)
- Vì khi đổi chỗ các chữ số cho nhau được số mới hơn số cũ 9 đơn vị nên ta có phương trình:
\(\overline{yx}\) - \(\overline{xy}\) = 9
⇔ 10y + x - 10x - y = 9
⇔ -9x + 9y = 9
⇔ -x + y = 1 (2)
Từ (1) và (2) ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}x+y=9\\-x+y=1\end{matrix}\right.\) qua tính toán ta được \(\left\{{}\begin{matrix}x=4\left(tm\right)\\y=5\left(tm\right)\end{matrix}\right.\)
Vậy số cần tìm là 45.