tìm số nguyên x và y biết
x2+165=y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk biết cách làm và rât muốn trả lời bn nhưng rất tiếc mk là anti Yoona
Ta có \(5x^2+y^2=270\Leftrightarrow5x^2=270-y^2< 270\)
\(\Rightarrow x^2< 54\Rightarrow x< 8\)
Do x nguyên tố nên x có thể nhận các giá trị 2, 3, 5, 7
- Với \(x=2\Rightarrow y^2=270-5.2^2=250\) \(\Rightarrow\) ko tồn tại y nguyên thỏa mãn (loại)
- Với \(x=3\Rightarrow y^2=270-5.3^2=225\Rightarrow y=15\) ko phải SNT (loại)
- Với \(x=5\Rightarrow y^2=270-5.5^2=145\) không tồn tại y nguyên t/m (loại)
- Với \(x=7\Rightarrow y^2=270-5.7^2=25\Rightarrow y=5\) (thỏa mãn)
Vậy \(\left(x;y\right)=\left(7;5\right)\)
\(x^2+165=y^2\)
=> \(x^2-y^2=-165\)
=> \(\left(x-y\right)\left(x+y\right)=-165\)
mà x,y nguyên => x-y , x+y thuộc ước nguyên -165
=>...
thảo hải !!!!!!!!!!!!^-^^-^
mi củng hay hị .hihi .mình chộ rành hây-------/-----/
Không mất tính tổng quát giả sử x ≥ y
⇒x²<x²+8y≤x²+8x<(x+4)²
VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2
hoặc x²+8y=(x+2)2x²+8y=(x+2)²
hoặc x²+8y=(x+3)²
Nếu x²+8y=(x+1)²
⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)
Nếu x²+8y=(x+2)² ⇒8y=4x+4 ⇒2y=x+1
⇒[(x+1)2]²+8x ⇒(x+12)²+8x là số chính phương.
⇒x²+34x+1=a² với a∈N
⇒(x+17)²−288=a²
⇒(x+17−a)(x+17+a)=288
Đến đây thì dễ rồi
Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)²
⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)
Giả sử x ≤ y
Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2
=> y2 + 8x = (y+1)²
(y+2)²
(y+3)²
Xét TH1 : y2 + 8x = (y + 1)2
=> y2 + 8x = y2 + 2y +1
=> 8x - 2y = 1
=> 4x - y = 1212 => Loại vì x, y ∈ N*
Xét TH2: y2 + 8x = (y + 2)2
=> y2 + 8x = y2 + 4x + 4
=> 8x - 4y = 4
=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:
Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)
Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)
Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y
Xét TH3 : y2 + 8x = ( y +3 )2
=> y2 + 8x = y2 + 6y + 9
=> 8x - 6y = 9
=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*
Vậy (x,y) = (1;1)
cái dới không correct