Tìm tất cả các số nguyên nhân để 6n+1/3n là số tự nhiên
Giúp mik vs mik đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(6a+1=2\left(3a-1\right)+2\)
Để 6a+1 chia hết cho 3a-1 thì 2(3a-1)+2 phải chia hết cho 3a-1
=> 2 chia hết cho 3a-1 vì 2(3a-1) chia hết ch 3a-1
=> 3a-1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Đến đây lập bảng giải tiếp
\(6a+1=2\left(3a-1\right)+3\)
Để 2(3a-1) +3 chia hết cho 3a-1 thì 3 phải chia hết cho 3a-1
Vì 2(3a-1) chia hết cho 3a-1
Vì a là số nguyên => 3a-1 là số nguyên => 3a là số nguyên
=> 3a-1 \(\in\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
3a-1 | -3 | -1 | 1 | 3 |
a | \(\frac{-2}{3}\) | 0 | \(\frac{2}{3}\) | \(\frac{4}{3}\) |
Vậy x=0
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Lời giải:
$3n+6\vdots n-1$
$\Rightarrow 3(n-1)+9\vdots n-1$
$\Rightarrow 9\vdots n-1$
$\Rightarrow n-1\in\left\{\pm 1; \pm 3; \pm 9\right\}$
$\Rightarrow n\in\left\{0; 2; -2; 4; 10; -8\right\}$
Vì $n$ là stn nên $n\in\left\{0; 2; 4; 10\right\}$
\(A=\dfrac{2n-3-n}{n+8}=\dfrac{n-3}{n+8}=\dfrac{n+8-11}{n+8}=1-\dfrac{11}{n+8}\)
Để A nguyên thì 11 chia hết cho n+8
=>\(n+8\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{-7;-9;3;-19\right\}\)
Câu 1: Giải
Ta có :\(\hept{\begin{cases}3^{100}=3^{4.25}=\overline{...1}\\19^{990}=19^{998+2}=19^{247.4}.19^2=\overline{...1}.\overline{...1}=\overline{...1}\end{cases}}\)
\(\Rightarrow3^{100}+19^{990}=\left(...1\right)+\left(...1\right)=\left(...2\right)⋮2\left(đpcm\right)\)
Câu 2 : Giải
Đặt \(d=\left(12n+1,20n+2\right)\)
\(\Rightarrow\hept{\begin{cases}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[5\left(12n+1\right)\right]⋮d\\\left[2\left(30n+2\right)\right]⋮d\end{cases}}\)
\(\Leftrightarrow\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)
hay \(\left[60n+5-60-4\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) tối giản với mọi n \(\inℤ\)
Ta có:3,7,9 nhân lên lũy thừa 4n sẽ có chữ số tận cùng =1
1.
3100+19990=...1+19988.192
=...1+...1. (...1)
= ...1+...1
=...2 chia hết cho 2(số có chữ số tận cùng là chữ số chẵn chia hết cho 2)
2.
Gọi ƯC(12n+1,30n+2)=d
ta có: 12n+1 chia hết cho d=>5(12n+1) chia hết cho d=>60n+5 chia hết cho d (1)
30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d (2)
Từ (1) và (2),suy ra: 60n+5-(60n+4) chia hết cho d
60n+5-60n-4 chia hết cho d
5-4 chia hết cho d
1 chia hết cho d
Ư(1)={1;-1}
=>bất cứ số nguyên n nào cx thích hợp để 12n+1/30n+2 là P/S tối giản!
để 6n+1/3n là số tự nhiên thì 6n+1 chia hết 3n
ta có: 6n+1 chia hết 3n ; 3n chia hết 3n
=> (6n+1) -3nchia hết 3n
=>(6n+1)- 2(3n)chia hết 3n
=>6n+1-6n chhia hết 3n
=>1 chia hết 3n
=>3n e Ư(1)={1,-1}
=>n =1/3;-1/3(loại vì ko phảỉ số nguyên
Vậy ko có giá trị n