K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Ta có \(y=\frac{5x+3}{xy\left(x+y\right)+x+y+\left(x+y\right)^2}=\frac{5x+3}{\left(x+y\right)\left(xy+1+x+y\right)}=\frac{5x+3}{\left(x+y\right)\left(y+1\right)\left(x+1\right)}\)

\(x,y\in Z\)

=> \(\frac{5x+3}{x+1}=5+\frac{-2}{x+1}\)là số nguyên

=> \(x+1\in\left\{\pm1;\pm2\right\}\)

=> \(x\in\left\{-3;-2;0;1\right\}\)

+ x=-3

=> \(y=\frac{6}{\left(y-3\right)\left(y+1\right)}\)

=> \(y^3-2y^2-3y-6=0\)(không có giá trị nguyên nào của y tm)

+ x=-2

=> \(y=\frac{7}{\left(y-2\right)\left(y+1\right)}\)=> \(y^3-y^2-2y-7=0\)(không có gt y nguyên tm)

+ \(x=0\)

=> \(y=\frac{3}{y\left(y+1\right)}\)=> \(y^3+y^2-3=0\)(không có gt y nguyên tm)

+ x=1

=> \(y=\frac{4}{\left(y+1\right)\left(y+1\right)}\)=> \(y^3+2y^2+2y-4=0\)(loại)

Vậy không có giá trị x,y nguyên TM đề bài

29 tháng 1 2019

\((x-2)^2\cdot(y-1)\varepsilonƯ(8)=[1,2,4,8,-1,-2,-4,-8]\)8

ta có bảng sau

\((x-2)^2\)1248-1-2-4-8
\(\left(y-1\right)\)8421-8-4-2-1
\(x\)3       
y        

 x và y còn lại tự tính nhé

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

a: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-2\cdot4=0\)

=>\(C=x\left(x^2-y\right)\left(x^3-2y^2\right)\left(x^4-3y^3\right)\left(x^5-4y^4\right)=0\)

b: x+y+1=0

=>x+y=-1

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)

\(=x^2\cdot\left(-1\right)-y^2\left(-1\right)+\left(x^2-y^2\right)+2\cdot\left(-1\right)+3\)

\(=-x^2+y^2+x^2-y^2-2+3\)

=1

31 tháng 7 2016

x2.(x+3)+y2.(y+5)(x+y).(x2xy+y2)=0

<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)

<=> \(3x^2+5y^2=0\)

ta thấy \(3x^2\ge0\)với mọi x

             \(5y^2\ge0\) với mọi y

=> \(3x^2+5y^2\ge0\)

=> x=0 và y=0

vậy cặp số (x;y)=(0;0)