K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Do đó $p$ có thể có dạng $3k+1$ hoặc $3k+2$

Nếu $p=3k+1$ thì $p+2=3k+1+2=3(k+1)\vdots 3$, mà $p+2>3$ với mọi $p$ là số nguyên tố nên $p+2$ không thể là số nguyên tố (trái với giả thiết)

Vậy $p$ chỉ có thể có dạng $3k+2$

Khi đó:

\(p+1=3k+2+1=3(k+1)\vdots 3(1)\)

Mặt khác, \(p\in\mathbb{P};p>3\) nên $p$ lẻ, suy ra $p+1$ chẵn hay $p+1\vdots 2(2)$

Từ \((1);(2)\) kết hợp với \((2,3)=1\) nên \(p+1\vdots (2.3=6)\) (đpcm)

3 tháng 1 2016

Sua dau bai la CMR neu p va 10p-1 la 2 so nguyen to ,p>3 thi p+1 chia het cho 6

Vi p la 2 so nguyen to suy ra p la so le suy ra p+1 la so chan suy ra p+1 chia het cho 2(1)

Vi p la so nguyen to lon hon 3 nen p co 2 dang:

                           3k+1;3k+2(k thuoc N*)

Voi p =3k+1

Ta co:10p-1=10(3k+1)-1=10x3k+10-1=10X3k+9=3(10k+3)

Voi k thuoc N* suy ra 3(10k+3) chia het cho 3 va 3(10k+3)>3 suy ra 3(10k+3) la hop so hay  10p-1 la hop so(loai)

Voi p=3k+2

Ta có p+1=3k+2+1=3k+3=3(k+1)

Với k thuộc N* suy ra 3(k+1) chia hết cho 3  suy ra p+1 chia het cho 3(2)

Ma (2;3)=1(3)

Từ(1);(2);(3) suy ra p+1 chia hết cho 2x3

                            hay p+1 chia het cho 6

Vay neu p va 10p-1 la 2 so nguyen ,p>3 thi p+1 chia het cho 6

31 tháng 12 2015

CHTT

Ai đi qua tick cho tớ vài cái nhé

20 tháng 12 2015

ai tick cho tui với à

ai làm chi tiết cho mik đi mik tick người đó 5 li-ke

2 tháng 1 2016

Ta xét 3 số tự nhiên liên tiếp p; p+1;p+2
Trong 3 số này luôn có một số chia hết cho 3
Vì p và p+2 đều là số nguyên tố lớn hơn 3 => hai số này ko chia hét cho 3 => p+1 chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (2)
2 và 3 nguyên tố cùng nhau
Tư (1)  và (2) => p+1 chia hết cho 6.

10 tháng 12 2015

vì p là số nguyên tố lớn hơn 3

suy ra p có 1 trong 2 dạng sau:

p=6k+1                      p=6k+5

với p=6k+1 thì p+2=6k+1+2

                            =6k+3

vì 6k chia hết co 3

    3chia hết cho 3

suy ra 6k+3chia hết cho 3

hay(p+2) chia hết cho 3 

mà p+2>3

suy ra p+2 là hợp số(loại)

với p=6k+5 thì p+1=6k+1+5

                           =6k+6

vì 6k chia hết cho 6

6 chia hết cho 6

suy ra (6k+6)chia hết cho 6

hay(p+1)chia hết cho 6

vậy p+1 chia hết cho 6

NHỚ TICK CHO MK NHA BN!

15 tháng 7 2015

Xét 3 số tự nhiên liên tiếp p, p + 1, p + 2.

Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 3 => p + 1 phải chia hết cho 3 (1)

Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 2 => p + 1 phải chia hết cho 2 (2)

Từ (1) và (2) kết hợp với ƯCLN (3,2) = 1 => p + 1 chia hết cho 2.3 => p + 1 chia hết cho 6

 

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

Do đó 4p + 1 là hợp số (.)

tick nhé

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)