Nếu p(p>3) và p+2 đều là số nguyên tố thì p+1chia hết cho 6
giải chi tiết giúp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sua dau bai la CMR neu p va 10p-1 la 2 so nguyen to ,p>3 thi p+1 chia het cho 6
Vi p la 2 so nguyen to suy ra p la so le suy ra p+1 la so chan suy ra p+1 chia het cho 2(1)
Vi p la so nguyen to lon hon 3 nen p co 2 dang:
3k+1;3k+2(k thuoc N*)
Voi p =3k+1
Ta co:10p-1=10(3k+1)-1=10x3k+10-1=10X3k+9=3(10k+3)
Voi k thuoc N* suy ra 3(10k+3) chia het cho 3 va 3(10k+3)>3 suy ra 3(10k+3) la hop so hay 10p-1 la hop so(loai)
Voi p=3k+2
Ta có p+1=3k+2+1=3k+3=3(k+1)
Với k thuộc N* suy ra 3(k+1) chia hết cho 3 suy ra p+1 chia het cho 3(2)
Ma (2;3)=1(3)
Từ(1);(2);(3) suy ra p+1 chia hết cho 2x3
hay p+1 chia het cho 6
Vay neu p va 10p-1 la 2 so nguyen ,p>3 thi p+1 chia het cho 6
ai làm chi tiết cho mik đi mik tick người đó 5 li-ke
Ta xét 3 số tự nhiên liên tiếp p; p+1;p+2
Trong 3 số này luôn có một số chia hết cho 3
Vì p và p+2 đều là số nguyên tố lớn hơn 3 => hai số này ko chia hét cho 3 => p+1 chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (2)
2 và 3 nguyên tố cùng nhau
Tư (1) và (2) => p+1 chia hết cho 6.
vì p là số nguyên tố lớn hơn 3
suy ra p có 1 trong 2 dạng sau:
p=6k+1 p=6k+5
với p=6k+1 thì p+2=6k+1+2
=6k+3
vì 6k chia hết co 3
3chia hết cho 3
suy ra 6k+3chia hết cho 3
hay(p+2) chia hết cho 3
mà p+2>3
suy ra p+2 là hợp số(loại)
với p=6k+5 thì p+1=6k+1+5
=6k+6
vì 6k chia hết cho 6
6 chia hết cho 6
suy ra (6k+6)chia hết cho 6
hay(p+1)chia hết cho 6
vậy p+1 chia hết cho 6
NHỚ TICK CHO MK NHA BN!
Xét 3 số tự nhiên liên tiếp p, p + 1, p + 2.
Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 3 => p + 1 phải chia hết cho 3 (1)
Vì p và p + 2 là số nguyên tố lớn hơn 3 => p và p + 2 ko chia hết cho 2 => p + 1 phải chia hết cho 2 (2)
Từ (1) và (2) kết hợp với ƯCLN (3,2) = 1 => p + 1 chia hết cho 2.3 => p + 1 chia hết cho 6
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$
Do đó $p$ có thể có dạng $3k+1$ hoặc $3k+2$
Nếu $p=3k+1$ thì $p+2=3k+1+2=3(k+1)\vdots 3$, mà $p+2>3$ với mọi $p$ là số nguyên tố nên $p+2$ không thể là số nguyên tố (trái với giả thiết)
Vậy $p$ chỉ có thể có dạng $3k+2$
Khi đó:
\(p+1=3k+2+1=3(k+1)\vdots 3(1)\)
Mặt khác, \(p\in\mathbb{P};p>3\) nên $p$ lẻ, suy ra $p+1$ chẵn hay $p+1\vdots 2(2)$
Từ \((1);(2)\) kết hợp với \((2,3)=1\) nên \(p+1\vdots (2.3=6)\) (đpcm)