M = 2 + 22 + 23 + 24 + ..... + 22017 + 22018
tính tổng M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
Vậy A = 22018 – 2
Ta có: A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
A = 22018 – 2
Vậy A = 22018 – 2
Sửa đề: A=2+2^2+2^3+...+2^2017
=>2*A=2^2+2^3+2^4+...+2^2018
=>2A-A=2^2018-2
=>A=2^2018-2
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
\(PT\Leftrightarrow x^2+x\left(m^2-4m+4\right)+4=0\\ \Leftrightarrow x^2+x\left(m-2\right)^2+4=0\)
PT có 2 nghiệm pb \(\Leftrightarrow\left(m-2\right)^4-16>0\Leftrightarrow\left(m-2\right)^4>16\Leftrightarrow\left[{}\begin{matrix}x< 0\\x>4\end{matrix}\right.\)
=>2M=2^2+2^3+2^4+2^5+........+2^2018+2^2019
M=2M-M
=>M=(2^2+2^3+.........+2^2019)-(2+2^2+.............+2^2018)
=>M=2^2019-2
\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\) (1)
\(\Rightarrow2M=2\left(2+2^2+2^3+2^4+...2^{2017}+2^{2018}\right)\)
\(\Rightarrow2M=2^2+2^3+2^4+2^5...+2^{2019}\) (2)
Lấy (2) - (1) , ta có :
\(2M=2^2+2^3+2^4+...+2^{2019}-M=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow M=2^{2019}-2\)