- chứng minh rằng: 1/a+1/b+1/c=1/(a+b+c) thì (a+b)(b+c)(c+a)
2.ch0 1/x+1/y+1/z=0. Tính yz/x2 +zx/y^2 + xy/z2.
làm dùm mình với bài nào cũng được.cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
Ta có : a + b + c =1
<=> ( a +b + c) 2 = 1
<=> a2 + b2 + c2 + 2 (ab +bc +ac ) =1
=> ab + bc +ac = 0
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{z}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\left\{{}\begin{matrix}x=a\left(x+y+z\right)\\y=b\left(x+y+z\right)\\z=c\left(x+y+z\right)\end{matrix}\right.\)
xy + yz +zx
= ab(x+y+z)2 + bc (x+y+z)2 + ca(x+y+z)2
= (ab+bc +ca ) ( x+y+z)2 =0
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
2. Vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
Ta có: \(\frac{1}{x^3}+\frac{1}{y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-3\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=-\frac{1}{z^3}-\frac{3}{xy}.\left(-\frac{1}{z}\right)=-\frac{1}{z^3}+\frac{3}{xyz}\)
Do đó: \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Ta lại có: \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)